K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

dsssws

30 tháng 7 2021

a, \(f\left(x\right)=9-3x^5+7x-2x^3+3x^5+x^2-3x-7x^4=-7x^4-2x^3+x^2+4x+9\)

\(g\left(x\right)=x^4+1+2x^2+7x^4+2x^3-3x-2x^2-x=8x^4+2x^3-4x+1\)

b, Ta có : \(h\left(x\right)=f\left(x\right)+g\left(x\right)=-7x^4-2x^3+x^2+4x+9+8x^4+2x^3-4x+1\)

\(=x^4+x^2+10\)

c, Ta có : \(x^4\ge0\forall x;x^2\ge0\forall x;10>0\Rightarrow x^4+x^2+10>0\)

Vậy phương trình ko có nghiệm ( đpcm ) 

30 tháng 7 2021

Kết luận cuối là Vậy đa thức h(x) ko có nghiệm ( đpcm ) nhé 

\(a) f ( x ) = 2 x ^4 + 3 x ^2 − x + 1 − x ^2 − x ^4 − 6 x ^3\)

\(= ( 2 x ^4 − x ^4 ) − 6 x ^3 + ( 3 x ^2 − x ^2 ) − x + 1\)

\(= x ^4 − 6 x ^3 + 2 x ^2 − x + 1\)

\(g ( x ) = 10 x ^3 + 3 − x ^4 − 4 x ^3 + 4 x − 2 x ^2\)

\(= − x ^4 + ( 10 x ^3 − 4 x ^3 ) − 2 x ^2 + 4 x + 3\)

\(= − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)

\(b) f ( x ) + g ( x ) = x ^4 − 6 x ^3 + 2 x ^2 − x + 1 − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)

\(= ( x ^4 − x ^4 ) + ( − 6 x ^3 + 6 x ^3 ) + ( 2 x ^2 − 2 x ^2 ) + ( − x + 4 x ) + ( 1 + 3 )\)

\(= 3 x + 4\)

c)Có \(h ( x ) = f ( x ) + g ( x ) = 3 x + 4\)

\(Cho h ( x ) = 0 ⇒ 3 x + 4 = 0\)

\(⇒ 3 x = − 4\) 

\(⇒ x = − \frac{4 }{3} \)

Vậy  \(x=-\frac{4}{3}\) là nghiệm của \(h ( x ) \)

 

`a,`

`F(x)=4x^4-2+2x^3+2x^4-5x+4x^3-9`

`F(x)=(2x^4+4x^4)+(2x^3+4x^3)-5x+(-2-9)`

`F(x)=6x^4+6x^3-5x-11`

`b,`

`K(x)=F(x)+G(x)`

`K(x)=(6x^4+6x^3-5x-11)+(6x^4+6x^3-x^2-5x-27)`

`K(x)=6x^4+6x^3-5x-11+6x^4+6x^3-x^2-5x-27`

`K(x)=(6x^4+6x^4)+(6x^3+6x^3)-x^2+(-5x-5x)+(-11-27)`

`K(x)=12x^4+12x^3-x^2-10x-38`

`c,`

`H(x)=F(x)-G(x)`

`H(x)=(6x^4+6x^3-5x-11)-(6x^4+6x^3-x^2-5x-27)`

`H(x)=6x^4+6x^3-5x-11-6x^4-6x^3+x^2+5x+27`

`H(x)=(6x^4-6x^4)+(6x^3-6x^3)+x^2+(-5x+5x)+(-11+27)`

`H(x)=x^2+16`

Đặt `x^2+16=0`

Ta có: \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(x^2+16\ge16>0\text{ }\forall\text{ }x\)

`->` Đa thức `H(x)` vô nghiệm.

16 tháng 4 2023

Mình cần gấp lắm r, giúp mình với

 

b)

Sửa đề: f(x)=A(x)+B(x)

Ta có: f(x)=A(x)+B(x)

\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

\(=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

a) Ta có: \(A\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

\(=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\dfrac{1}{4}x\)

\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Ta có: \(B\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

\(=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\dfrac{1}{4}\)

\(=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9

g(x)=x^5+7x^4+2x^3+2x^2-3x-9

b: h(x)=3x^2+x

c: h(x)=0

=>x=0; x=-1/3

7 tháng 4 2020

em muốn uống chà sữa

7 tháng 4 2020

giup di

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`