Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Tính giá trị biểu thức sau tại x+y+1=0
\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\left(1\right)\)
Ta có: x + y + 1 = 0 => x + y = -1
(1) \(\Leftrightarrow x^2.\left(-1\right)-y^2.\left(-1\right)+\left(x-y\right)\left(x+y\right)+2.\left(-1\right)+3\)
\(=y^2-x^2+\left(x-y\right)\left(-1\right)-2+3\)
\(=\left(y-x\right)\left(y+x\right)-\left(x-y\right)+1\)
\(=\left(y-x\right).\left(-1\right)-x+y+1\)
\(=-y+x-x+y+1\)
\(=1\)
2, Cho xyz=2 và x+y+z=0
Tính giá trị biểu thức
\(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có: x + y + z = 0
=> x + y = -z (1)
=> y + z = -x (2)
=> x + z = -y (3)
Từ (1);(2);(3)
=> \(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)<=> (-z).(-x).(-y) = 0
ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}=\frac{7+3+10}{2x+2+2y-4+2z+8}=\frac{20}{2\left(x+y+z\right)+6}=\frac{20}{40}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2x+2=14\\2y-4=6\\2z+8=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
ta có
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{7+3}{2x+2y+2-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-4}=\frac{5}{x+y-1}\)
\(=\frac{10}{17-1+4}=\frac{10}{20}=\frac{1}{2}\)
từ đó bạn tính ra nha
Ta có 10x . 5y = 20y
=> 10x = (20 : 5)y
=> 10x = 4y
Với x ; y > 0 thì
10x = ...0 ;
4y = ...4 ; ...6 ;
=> Không có x;y thỏa mãn
=> x = y = 0
b) 2x = 4y - 1
=> 2x = 22y - 2
=> x = 2y - 2 (1)
Lại có 27y = 3x + 8
=> 33y = 3x + 8
=> 3y = x + 8
=> x = 3y - 8 (2)
Từ (1) và (2) => 2y - 2 = 3y - 8
=> y = 6
=> x = 10
Vậy x = 10 ; y = 6
a) 3x – 6 + x(x – 2) = 0
=> 3x - 6 + x2 - 2x = 0
=> ( 3x - 2x ) - 6 + x2 = 0
=> x - 6 + x2 = 0
=> x2 + x = 6
=> x( x + 1 ) = 2 . 3
=> x = 2
b) 2x(x – 3) – x(x – 6) – 3x = 0
=> 2x2 - 6x - x2 + 6x - 3x = 0
=> ( 2x2 - x2 ) + ( 6x - 6x ) - 3x = 0
=> x2 - 3x = 0
=> x( x - 3 ) = 0
\(\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x - 3 = 0}\end{cases}\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x = 3}\end{cases}}}\)
a) Vì x và y là hai địa lượng tỉ lệ nghịch
\(y=\frac{a}{x}=a=x.y\)
Thay \(a=2.4\)
Vậy \(a=8\)
b) \(x=\frac{a}{y}\)
c) Vì x là y là hai đại lượng tỉ lệ nghịch
\(x=\frac{a}{y}=x=\frac{a}{y}\)
Thay \(x=\frac{8}{-1}\); Thay \(x=\frac{8}{2}\)
\(\hept{\begin{cases}x=4\\x=8\end{cases}}\)
Bài làm
a) Ta có:
\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)
\(P\left(x\right)=x^5-2x^2+7x^4-9x^3-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
\(Q\left(x\right)=5x^4-x^5-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
c) Ta có:
\(P\left(1\right)=1^5+7.1^4-9.1^3-2.1^2-\frac{1}{4}.1\)
\(P\left(1\right)=-\frac{13}{4}\)
Vậy giá trị của biểu thức P = -13/4 khi x = 1
\(Q\left(0\right)=-0^5+5.0^4-2.0^3+4.0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(Q\left(0\right)=-\frac{1}{4}\)
Theo đề ta có:\(\frac{x}{3}=\frac{y}{7}\)và y2 - x2 = 160
\(\Rightarrow\frac{y^2-x^2}{7^2-3^2}=\frac{160}{40}=4\)
* x = 3 x 4 = 12
* y = 7 x 4 = 28
Vậy x = 12 và y = 28
Mik ko biết đúg ko nếu sai mog bn thông cảm
Vì\(\frac{x}{3}=\frac{y}{7}\)
=>\(\frac{y^2}{49}=\frac{x^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
=>\(\frac{y^2}{49}=\frac{x^2}{9}=\frac{y^2-x^2}{49-9}=\frac{160}{40}=4\)
=>\(\frac{y^2}{49}=4=>y^2=4.49=196\)
=>y²=7²=(-7)²
=>y=7; y=-7
=>\(\frac{x^2}{9}=4=>x^2=4.9=36\)
=>x²=6²=(-6)²
=>x=6; x=-6
Vậy x=6; -6
y=7; -7
# hok tốt#
\(\frac{x}{-3}\)\(=\) \(\frac{y}{7}\)và \(x^2-y^2=160\)
Đặt : \(\frac{x}{-3}=\frac{y}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=-3k\\y=7k\end{cases}}\)
Thay vào : \(x^2-y^2=160\)ta được :
\(\left(-3k\right)^2-\left(7k\right)^2=160\)
\(\left(-3\right)^2.k^2-\left(7\right)^2.k^2=160\)
\(9.k^2-49.k^2=160\)
\(\left(9-49\right).k^2=160\)
\(-40.k=160\)
\(k=-4\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=-3.\left(-4\right)=12\\y=7.\left(-4\right)=-28\end{cases}}\)
Vậy ....................