">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

\(\frac{x}{-3}\)\(=\) \(\frac{y}{7}\)và \(x^2-y^2=160\)

Đặt : \(\frac{x}{-3}=\frac{y}{7}=k\)

\(\Rightarrow\hept{\begin{cases}x=-3k\\y=7k\end{cases}}\)

Thay vào : \(x^2-y^2=160\)ta được :

\(\left(-3k\right)^2-\left(7k\right)^2=160\)

\(\left(-3\right)^2.k^2-\left(7\right)^2.k^2=160\)

\(9.k^2-49.k^2=160\)

\(\left(9-49\right).k^2=160\)

\(-40.k=160\)

\(k=-4\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=-3.\left(-4\right)=12\\y=7.\left(-4\right)=-28\end{cases}}\)

Vậy ....................

21 tháng 4 2020

TLMJFDLIIS HFIEHFU ưAUDSEIq

21 tháng 4 2020

1, Tính giá trị biểu thức sau tại x+y+1=0

\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\left(1\right)\)

Ta có: x + y + 1 = 0 => x + y = -1

(1) \(\Leftrightarrow x^2.\left(-1\right)-y^2.\left(-1\right)+\left(x-y\right)\left(x+y\right)+2.\left(-1\right)+3\)

\(=y^2-x^2+\left(x-y\right)\left(-1\right)-2+3\)

\(=\left(y-x\right)\left(y+x\right)-\left(x-y\right)+1\)

\(=\left(y-x\right).\left(-1\right)-x+y+1\)

\(=-y+x-x+y+1\)

\(=1\)

2, Cho xyz=2 và x+y+z=0

Tính giá trị biểu thức

\(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có: x + y + z = 0

=> x + y = -z (1)

=> y + z = -x (2)

=> x + z = -y (3)

Từ (1);(2);(3) 

=> \(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)<=> (-z).(-x).(-y) = 0

26 tháng 8 2021

A= 3x3 - (3x -2)x2  - 2x(x+1)

A= 3x3 - 3x3 + 2x2 - 2x2 -2x

A= -2x

Thay x =-20 vào A ta được:

A = -2.(-20) = 40

Vậy A= 40 khi x = -20 

b) C= x(2x+1) - x2(x+2) + x3 -x + 3

C= 2x2 + x - x3 - 2x2 + x3 -x +3

C= (2x2 - 2x2) + (x-x) - (x3 -x3) +3 

C = 3

Vậy C= 3

NM
2 tháng 9 2021

ta có :

\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}=\frac{7+3+10}{2x+2+2y-4+2z+8}=\frac{20}{2\left(x+y+z\right)+6}=\frac{20}{40}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2x+2=14\\2y-4=6\\2z+8=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)

ta có 

\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{7+3}{2x+2y+2-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-4}=\frac{5}{x+y-1}\)

\(=\frac{10}{17-1+4}=\frac{10}{20}=\frac{1}{2}\)

từ đó bạn tính ra nha 

2 tháng 9 2021

Ta có 10x . 5y = 20y

=> 10x = (20 : 5)y

=> 10x = 4y 

Với x ; y > 0 thì 

10x = ...0 ;

4y = ...4 ; ...6 ; 

=> Không có x;y thỏa mãn

=>  x = y = 0

b) 2x = 4y - 1

=> 2x = 22y - 2

=> x = 2y - 2 (1)

Lại có  27y = 3x + 8 

=> 33y = 3x + 8 

=> 3y = x + 8

=> x = 3y - 8 (2) 

Từ (1) và (2) => 2y - 2 = 3y - 8 

=> y = 6

=> x = 10

Vậy x = 10 ; y = 6

7 tháng 7 2021

a) 3x – 6 + x(x – 2) = 0

=> 3x - 6 + x2 - 2x = 0

=> ( 3x - 2x ) - 6 + x2 = 0

=> x - 6 + x2 = 0

=> x2 + x = 6

=> x( x + 1 ) = 2 . 3

=> x = 2

7 tháng 7 2021

b) 2x(x – 3) – x(x – 6) – 3x = 0

=> 2x2 - 6x - x2 + 6x - 3x = 0

=> ( 2x2 - x2 ) + ( 6x - 6x ) - 3x = 0

=> x2 - 3x = 0

=> x( x - 3 ) = 0

\(\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x - 3 = 0}\end{cases}\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x = 3}\end{cases}}}\)

27 tháng 11 2021

a) Vì x và y là hai địa lượng tỉ lệ nghịch 

\(y=\frac{a}{x}=a=x.y\)

Thay \(a=2.4\)

Vậy \(a=8\)

b) \(x=\frac{a}{y}\)

c) Vì x là y là hai đại lượng tỉ lệ nghịch

\(x=\frac{a}{y}=x=\frac{a}{y}\)

Thay \(x=\frac{8}{-1}\); Thay \(x=\frac{8}{2}\)

\(\hept{\begin{cases}x=4\\x=8\end{cases}}\)

Bài làm

a) Ta có:

\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)

\(P\left(x\right)=x^5-2x^2+7x^4-9x^3-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)

\(Q\left(x\right)=5x^4-x^5-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)

Vậy \(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)

Vậy \(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)

c) Ta có: 

\(P\left(1\right)=1^5+7.1^4-9.1^3-2.1^2-\frac{1}{4}.1\)

\(P\left(1\right)=-\frac{13}{4}\)

Vậy giá trị của biểu thức P = -13/4 khi x = 1

\(Q\left(0\right)=-0^5+5.0^4-2.0^3+4.0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(Q\left(0\right)=-\frac{1}{4}\)

14 tháng 5 2021

Cảm ơn bạn nha!

Theo đề ta có:\(\frac{x}{3}=\frac{y}{7}\)và y2 - x2 = 160

\(\Rightarrow\frac{y^2-x^2}{7^2-3^2}=\frac{160}{40}=4\)

* x = 3 x 4 = 12

* y = 7 x 4 = 28

Vậy x = 12 và y = 28

Mik ko biết đúg ko nếu sai mog bn thông cảm

5 tháng 10 2019

\(\frac{x}{3}=\frac{y}{7}\)

=>\(\frac{y^2}{49}=\frac{x^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

=>\(\frac{y^2}{49}=\frac{x^2}{9}=\frac{y^2-x^2}{49-9}=\frac{160}{40}=4\)

=>\(\frac{y^2}{49}=4=>y^2=4.49=196\)

=>y²=7²=(-7)²

=>y=7; y=-7

=>\(\frac{x^2}{9}=4=>x^2=4.9=36\)

=>x²=6²=(-6)²

=>x=6; x=-6

Vậy x=6; -6

        y=7; -7

# hok tốt#