Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:H(-1)=a-b+c
H(-2)=4a-2b+c
=>H(-1)+H(-2)=5a-3b+2c=0(giả thiết)
=>H(-1)=-H(-2)
=>H(-1).H(-2)=-H(-2).H(-2)=-H(-2)2\(\le\)0
Vậy...
Theo đề bài cho ta có:
H(-1) = a - b - c
H(-2) = 4a - 3b + 2c
\(\Rightarrow\)→\(\Rightarrow\) H(-1) + H(-2)=(a - b + c) +( 4a -3b +2c) = 5a - 3b + 2c = 0
→ H(-1) = -H(-2)
→ H(-1) . H(-2) = -[H(-2)]2
Mà -[H(-2)] 2 lớn hơn hoặc bằng 0 ↔ -[H(-2)]2 ≤ 0
Vậy H(-1) . H(-2) ≤ 0 (đpcm)
1 câu trả lời
a) Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)
\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)
\(=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)
Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)
b) Sửa đề:
Biết \(5a+b+2c=0\)
Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)
\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)
\(=5a+b+2c=0\)
\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)
\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)
Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)
a) Vừa nhìn đề biết ngay sai
Sửa đề:
Chứng minh: \(P\left(-1\right).P\left(-2\right)\le0\)
Giải:
Ta có:
\(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{matrix}\right.\)
\(\Rightarrow P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)\)
\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)
\(=5a-3b+2c=0\)
\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
\(\Rightarrow P\left(-1\right).P\left(-2\right)=-P^2\left(-2\right)\le0\) vì \(P^2\left(-2\right)\ge0\)
Vậy nếu \(5a-3b+2c=0\) thì \(P\left(-1\right).P\left(-2\right)\le0\)
b) Giải:
Từ giả thiết suy ra:
\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
Lại có:
\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (Đpcm)
a) Có P(1) = a.\(1^2\)+b.1+c = a+b+c
P(2) = a.\(2^2\)+b.2+c = 4a+2b+c
=>P(1)+P(2) = a+b+c+4a+2b+c = 5a+3b+2c = 0
<=>\(\left[{}\begin{matrix}P\left(1\right)=P\left(2\right)=0\\P\left(1\right)=-P\left(2\right)\end{matrix}\right.\)
Nếu P(1) = P(2) => P(1).P(2) = 0
Nếu P(1) = -P(2) => P(1).P(2) < 0
Vậy P(1).P(2)\(\le\)0
b) Từ \(b^2=ac\) =>\(\dfrac{a}{b}=\dfrac{b}{c}\) (1)
\(c^2=bd\) =>\(\dfrac{b}{c}=\dfrac{c}{d}\) (2)
Từ (1) và (2) => \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(P\left(x\right)=ax^2+bx\)
\(\Rightarrow P\left(-1\right)=a-b\)
và \(P\left(-2\right)=4a-2b\)
\(\Rightarrow P\left(-1\right)+P\left(-2\right)=5a-3b=0\)
\(\Rightarrow P\left(-1\right)\)và \(P\left(-2\right)\)trái dấu hoặc cùng bằng 0
\(\Rightarrow P\left(-1\right)\)\(.P\left(-2\right)\le0\)(đpcm)
Ta có: f(-2)=16a-8b+4c-2d+e
f(1)=a+b+c+d+e(2)
5a+c=3b+d
=>20a+4c=12b+4d
=>f(-2)=12b+4d-8b-2d-4a+e=4b+2d-4a+e
5a+c=3b+d
=>3b-4a=a+c-d
=>f(-2)=a+b+c+d+e(2)
Từ (1) và (2) => f(-2).f(1)=(a+b+c+d+e)2\(\ge0\)với mọi a,b,c,d,e(đpcm)
Tính H(-1) = a.(-1)2 + b.(-1) + c = a - b + c
H(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c
=> H(-1) + H(-2) = 5a - 3b + 2c = 0
=> H(-1) = - H(-2)
=> H(-1) . H(-2) = [- H(-2)].h(-2) = - H2(-2) \(\le\) 0 Vì H2(-2) \(\ge\) 0
=> ĐPCM
Ta có \(H\left(-1\right)=a-b+c;H\left(-2\right)=4a-2b+c\)
\(\Rightarrow H\left(-1\right)+H\left(-2\right)=a-b+c+4a-2b+c=5a-3b+2c=0\left(1\right)\)
\(\Rightarrow H\left(-1\right)=-H\left(-2\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow H\left(-1\right)\cdot H\left(-2\right)=-H\left(-2\right)\cdot H\left(-2\right)=-\left[H\left(-2\right)\right]^2=\le0\)
a) \(P\left(-1\right)=a-b+c\)
\(P\left(-2\right)=4a-2b+c\)
b) \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c=0\)
=> P ( - 1) = -P(-2)
=> P( -1 ) . P (-2) \(=-\left[P\left(-2\right)\right]^2\le0\)
a) \(\text{P}\left(-1\right)=\text{a}+\text{b}+\text{c}\)
\(\text{P}\left(-2\right)=4\text{a}-2\text{b}+\text{c} \)
b) \(\text{P}\left(-1\right)+\text{P}\left(-2\right)=5\text{a}+3\text{b}+2\text{c}=0\)
\(\Rightarrow\text{ P}\left(-1\right)=\text{P}\left(-2\right)\)
\(\Rightarrow\text{ P}\left(-1\right).\text{ P}\left(-2\right)=\left[\text{P}\left(-2\right)\right]^2\le0\)