K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Bài 2:

Vì $b\perp GH, a\perp GH\Rightarrow a\parallel b$

Do đó:

$\widehat{K_1}=\widehat{I_1}=78^0$ (hai góc đồng vị)

$\widehat{K_2}=\widehat{K_1}=78^0$ (hai góc đối đỉnh)

$\widehat{K_4}=180^0-\widehat{K_1}=180^0-78^0=102^0$ (hai góc kề bù)

$\widehat{K_3}=\widehat{K_4}=102^0$  (đối đỉnh)

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Bài 3: Kẻ tia $Bt\parallel Ax$. Vì $Ax\parallel Cy$ nên $Bt\parallel Cy$

Ta có:

$\widehat{B_1}=\widehat{BAx}=47^0$ (hai góc so le trong)

$\widehat{B_2}+\widehat{BCy}=180^0$ (trong cùng phía)

$\Rightarrow \widehat{B_2}=180^0-\widehat{BCy}=180^0-122^0=58^0$

Do đó: $\widehat{ABC}=\widehat{B_1}+\widehat{B_2}=47^0+58^0=105^0$

18 tháng 11 2021

bài 5 : Gọi số táo ; cam và nho lần lượt là a ; b ; c ( quả ) ( a , b , c ∈ N* ) và lần lượt tỉ lệ với 4 ; 7 ; 9

Theo bài ra , ta có :

5a - b - c = 16

a\(\dfrac{a}{4}=\dfrac{b}{7}=\dfrac{c}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{4}=\frac{b}{7}=\frac{c}{9}=\frac{5a}{20}=\frac{5a-b-c}{20-7-9}=\frac{16}{4}\)= 4

=> a= 4.4=16 
     b= 4.7= 28

      c=4.9=36

26 tháng 10 2021

Mình không biết nha

26 tháng 10 2021

Bài 3 :

A B S M C P N x y 1 2 z 1 2

a) Kéo dài tia NM và NM cắt BC tại S

Khi đó ta có :

\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)

b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)

\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)

Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)

Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong 

=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau

6 tháng 2 2017

MNE = MPF

MND =MPD

DME = DMF

7 tháng 2 2017

3. Xét tam giác ADM và tam giác AEM có :

góc ADM = góc AEM = 90 độ

Góc BAM = góc CAM (gt)

AM chung

=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)

=>MD = ME (cặp cạnh t/ứng )

AD = AE (cặp cạnh t/ứng )

Xét tam giác MDB và tam giác MEC có :

MB = MC (gt)

góc MDB = góc MEC = 90 độ

MD = ME ( câu a)

=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)

Vì AD + DB = AB

AE + EC = AC

Mà AD = AE

DB = EC

=>AB = AC

Xét tam giác ABM và tam giác ACM có

AM chung

góc BAM = góc CAM (gt)

AB = AC (CMT)

=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)

Vậy có 3 cặp tam giác bằng nhau


7 tháng 10 2017

\(\left(x-3\right).\left(x-2015\right)< 0\)

\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu

\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)

\(\Rightarrow3< x< 2015\)

\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)

( ko bt đúng hay sai nx )

7 tháng 10 2017

thám tử

\(\left(x-3\right)\left(x-2015\right)< 0\)

Với mọi \(x\in R\) thì:

\(x-2015< x-3\)

Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)

Nên \(3< x< 2015\)

15 tháng 9 2017

\(\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|=0\)

\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|\ge0\forall x\\\left|y+\dfrac{2}{3}\right|\ge0\forall y\\\left|x^2+xz\right|\ge0\forall x;z\end{matrix}\right.\) \(\Rightarrow\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|=0\\\left|y+\dfrac{2}{3}\right|=0\\\left|x^2+xz\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{2}{3}\\z=-\dfrac{1}{2}\end{matrix}\right.\)

3 tháng 5 2017

Ôn tập toán 7

3 tháng 5 2017

Ôn tập toán 7

7 tháng 5 2017

\(x-y=9\Rightarrow x=9+y\Rightarrow y=x-9\)

Ta có:

\(\dfrac{4x-9}{3x+y}-\dfrac{4y+9}{3y+x}\)

\(=\dfrac{3x+x-9}{3x+y}-\dfrac{3y+y+9}{3y+x}\)

\(=\dfrac{3x+\left(x-9\right)}{3x+y}-\dfrac{3y+\left(y+9\right)}{3y+x}\)

\(=\dfrac{3x+y}{3x+y}-\dfrac{3y+x}{3y+x}\)

\(=1-1\)

\(=0\)

Vậy biểu thức \(\dfrac{4x-9}{3x+y}-\dfrac{4y+9}{3y+x}\)khi \(x-y=9\) là 0

5 tháng 5 2017

\(x-y=9\Rightarrow y=x-9\) thay vào biểu thức B ta được :

\(B=\dfrac{4x-9}{3x+\left(x-9\right)}-\dfrac{4\left(x-9\right)+9}{3\left(x-9\right)+x}=\dfrac{4x-9}{4x-9}-\dfrac{4x-27}{4x-27}=1-1=0\)

Vậy giá trị của B là 0 tại \(x-y=9\)

17 tháng 7 2017

Bài 1:
A B C . . / D E F / // // x x

a) Xét \(\Delta AED\)\(\Delta CEF\)có:

AE = EC (gt)

\(\widehat{AED}=\widehat{CEF}\left(đđ\right)\)

DE = EF (gt)

Do đó: \(\Delta AED=\Delta CEF\left(c-g-c\right)\)

=> AD = CF (hai cạnh tương ứng)

mà AD = DB (D là trung điểm của BA)

=> CF = DB

b) Vì \(\Delta AED=\Delta CEF\left(c-g-c\right)\)

=> \(\widehat{DAE}=\widehat{FCE}\) (hai cạnh tương ứng)

=> DA // CF

mà D nằm giữa đoạn thẳng AB (D là trung điểm của AB)

=> DB // CF

=> \(\widehat{BDC}=\widehat{FCD}\left(soletrong\right)\)

Xét \(\Delta BDC\)\(\Delta FCD\) có:

DC (chung)

\(\widehat{BDC}=\widehat{FCD}\left(cmt\right)\)

BD = CF (cmt)

Do đó: \(\Delta BDC=\Delta FCD\left(c-g-c\right)\)

c) Vì \(\Delta BDC=\Delta FCD\left(cmt\right)\)

=> \(\widehat{BCD}=\widehat{FCD}\) (hai cạnh tương ứng)

=> DF // BC (soletrong)

hay DE // BC

\(\Delta BDC=\Delta FCD\left(cmt\right)\)

=> DF = BC (hai cạnh tương ứng)

\(DE=\dfrac{1}{2}DF\) (D là trung điểm của DF)

=> \(DE=\dfrac{1}{2}BC\)