K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 9

Bằng hình vẽ này thì câu hỏi ko trả lời được đâu em.

Hai tam giác vẽ chẳng chính xác gì hết, giao điểm cũng ko rõ ràng vị trí.

không giải được á


a: \(x^2-x+1\)

\(=x^2-x+\frac14+\frac34\)

\(=\left(x-\frac12\right)^2+\frac34\ge\frac34>0\forall x\)

b: \(x^2+x+2\)

\(=x^2+x+\frac14+\frac74\)

\(=\left(x+\frac12\right)^2+\frac74\ge\frac74>0\forall x\)

c: \(-a^2+a-3\)

\(=-\left(a^2-a+3\right)\)

\(=-\left(a^2-a+\frac14+\frac{11}{4}\right)\)

\(=-\left(a-\frac12\right)^2-\frac{11}{4}\le-\frac{11}{4}<0\forall a\)

d:Đặt \(A=\frac{3x^2-x+1}{-4x^2+2x-1}\)

\(3x^2-x+1\)

\(=3\left(x^2-\frac13x+\frac13\right)\)

\(=3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}+\frac{11}{36}\right)\)

\(=3\left(x-\frac16\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\) (1)

\(-4x^2+2x-1\)

\(=-4\left(x^2-\frac12x+\frac14\right)\)

\(=-4\left(x^2-2\cdot x\cdot\frac14+\frac{1}{16}+\frac{3}{16}\right)\)

\(=-4\left(x-\frac14\right)^2-\frac34\le-\frac34<0\forall x\) (2)

Từ (1),(2) suy ra \(\frac{3x^2-x+1}{-4x^2+2x-1}<0\forall x\)

=>A<0 với mọi x

a: \(2x^2+2x+3\)

\(=2\left(x^2+x+\frac32\right)\)

\(=2\left(x^2+x+\frac14+\frac54\right)\)

\(=2\left(x+\frac12\right)^2+\frac52\ge\frac52\forall x\)

=>\(\frac{3}{2x^2+2x+3}\le3:\frac52=\frac65\forall x\)

Dấu '=' xảy ra khi \(x+\frac12=0\)

=>\(x=-\frac12\)

b: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

=>\(\frac{1}{-x^2+2x-2}\ge\frac{1}{-1}=-1\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

c: \(3x^2+4x+15\)

\(=3\left(x^2+\frac43x+5\right)\)

\(=3\left(x^2+2\cdot x\cdot\frac23+\frac49+\frac{41}{9}\right)\)

\(=3\left(x+\frac23\right)^2+\frac{41}{3}\ge\frac{41}{3}\forall x\)

=>\(\frac{5}{3x^2+4x+15}\le5:\frac{41}{3}=\frac{15}{41}\)

=>\(-\frac{5}{3x^2+4x+15}\ge-\frac{15}{41}\forall x\)

Dấu '=' xảy ra khi \(x+\frac23=0\)

=>\(x=-\frac23\)

d: \(-4x^2+8x-5\)

\(=-4\left(x^2-2x+\frac54\right)\)

\(=-4\left(x^2-2x+1+\frac14\right)\)

\(=-4\left(x-1\right)^2-1<=-1\forall x\)

=>\(\frac{2}{-4x^2+8x-5}\ge\frac{2}{-1}=-2\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

2 giờ trước (14:38)

Bài 5:

a:

AMCD là hình vuông

=>CM⊥MA tại M

=>CM⊥AB tại M

MBFE là hình vuông

=>MB⊥ME tại M

=>ME⊥AB tại M

mà CM⊥AB tại M

và CM,ME có điểm chung là M

nên M,C,E thẳng hàng

Gọi K là giao điểm của AC và BE

AMCD là hình vuông

=>AC là phân giác của góc DAM

=>\(\hat{CAM}=\frac12\cdot\hat{DAM}=45^0\)

MBFE là hình vuông

=>BE là phân giác của góc MBF

=>\(\hat{MBE}=\hat{FBE}=\frac12\cdot\hat{MBF}=45^0\)

Xét ΔKAB có \(\hat{KAB}+\hat{KBA}=45^0+45^0=90^0\)

nên ΔKAB vuông tại K

=>AK⊥EB tại K

Xét ΔEAB có

AK,EM là các đường cao

AK cắt EM tại C

Do đó: C là trực tâm của ΔEAB

=>BC⊥AE

Bài 4:

a: Xét ΔADI vuông tại D và ΔAHI vuông tại H có

AI chung

\(\hat{DAI}=\hat{HAI}\)

Do đó: ΔADI=ΔAHI

=>AD=AH

mà AD=AB

nên AH=AB

Xét ΔAHK vuông tại H và ΔABK vuông tại B có

AK chung

AH=AB

Do đó: ΔAHK=ΔABK

b: ΔAHK=ΔABK

=>\(\hat{HAK}=\hat{BAK}\)

=>AK là phân giác của góc HAB

=>\(\hat{HAB}=2\cdot\hat{HAK}\)

\(\hat{DAH}+\hat{BAH}=\hat{BAD}\) (tia AH nằm giữa hai tia AB và AD)

\(\Rightarrow2\left(\hat{IAH}+\hat{HAK}\right)=90^0\)

=>\(2\cdot\hat{IAK}=90^0\)

=>\(\hat{IAK}=45^0\)

2 giờ trước (14:39)

no

Bài 5:

a: \(\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)

\(=x^3+y^3\)

b: \(M=x^3+y^3+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

\(=1^3-3xy+3xy=1\)

\(N=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left\lbrack\left(x+y\right)^2-2xy\right\rbrack+6x^2y^2\)

\(=1^3-3xy\cdot1+3xy\left\lbrack1+2xy\right\rbrack-6x^2y^2\)

=1-3xy+3xy\(+6x^2y^2-6x^2y^2\)

=1

Bài 4:

a: \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x^2=5\)

=>\(x^3-6x^2+12x-8-x\left(x^3-1\right)+6x^2=5\)

=>\(x^3+12x-8-x^3+x=5\)

=>13x-8=5

=>13x=13

=>x=1

b: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)

=>\(x^3-6x^2+12x-8-x^3+6x^2=4\)

=>12x-8=4

=>12x=12

=>x=1

c: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

=>\(x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1=28\)

=>\(9x^3+9x^2+27x+28-9x^3-6x^2-x=28\)

=>\(3x^2+26x=0\)

=>x(3x+26)=0

=>\(\left[\begin{array}{l}x=0\\ 3x+26=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-\frac{26}{3}\end{array}\right.\)

d: \(\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)

=>\(x^6-3x^4+3x^2-1-\left(x^6-1\right)=0\)

=>\(-3x^4+3x^2=0\)

=>\(-3x^2\left(x^2-1\right)=0\)

=>\(\left[\begin{array}{l}x^2=0\\ x^2=1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\\ x=-1\end{array}\right.\)

e: \(\left(x+1\right)^3+\left(x-2\right)^3-2x^2\left(x-\frac32\right)=3\)

=>\(x^3+3x^2+3x+1+x^3-6x^2+12x-8-2x^3+3x^2=3\)

=>15x-7=3

=>15x=10

=>\(x=\frac{10}{15}=\frac23\)

f: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)

=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)

=>\(6x^2+2-6x^2+12x-6=-10\)

=>12x-4=-10

=>12x=-6

=>\(x=-\frac{6}{12}=-\frac12\)

Bài 3:

a: \(A=x^3+12x^2+48x+64\)

\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3=\left(x+4\right)^3\)

Khi x=6 thì \(A=\left(6+4\right)^3=10^3=1000\)

b: \(B=x^3-6x^2+12x-8\)

\(=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3\)

\(=\left(x-2\right)^3\)

Khi x=22 thì \(B=\left(22-2\right)^3=20^3=8000\)

c: \(C=8x^3-12x^2+6x-1\)

\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)

\(=\left(2x-1\right)^3\)

Thay x=25,5 vào C, ta được:

\(C=\left(2\cdot25,5-1\right)^3=50^3=125000\)

d: \(D=1-x+\frac{x^2}{3}-\frac{x^3}{27}\)

\(=1^3-3\cdot1^2\cdot\frac13x+3\cdot1\cdot\left(\frac13x\right)^3-\left(\frac13x\right)^3=\left(1-\frac13x\right)^3\)

Thay x=-27 vào D, ta được:

\(D=\left\lbrack1-\left(-\frac13\right)\cdot27\right\rbrack^3=10^3=1000\)

e: \(E=\frac{x^3}{y^3}+\frac{6x^2}{y^2}+12\cdot\frac{x}{y}+8\)

\(=\left(\frac{x}{y}\right)^3+3\cdot\left(\frac{x}{y}\right)^2\cdot2+3\cdot\frac{x}{y}\cdot2^2+2^3\)

\(=\left(\frac{x}{y}+2\right)^3\)

Thay x=36;y=2 vào D, ta được:

\(D=\left(\frac{36}{2}+2\right)^3=\left(18+2\right)^3=20^3=8000\)

Bài 2:

a: \(x^3-3x^2+3x-1\)

\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=\left(x-1\right)^3\)

b: \(8-12x+6x^2-x^3=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3=\left(2-x\right)^3\)

c: \(27+27x+9x^2+x^3\)

\(=x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3\)

\(=\left(x+3\right)^3\)

d: \(\left(x-y\right)^3+\left(x-y\right)^2+\frac13\left(x-y\right)+\frac{1}{27}\)

\(=\left(x-y\right)^3+3\cdot\left(x-y\right)^2\cdot\frac13+3\cdot\left(x-y\right)\cdot\left(\frac13\right)^2+\left(\frac13\right)^3\)

\(=\left(x-y+\frac13\right)^3\)

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

29 tháng 8

bạn ơi, mik ko thấy

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)

2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)

\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)

\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)

4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)

5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)

7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)

8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)

10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)

11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)