
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(x^2-x+1\)
\(=x^2-x+\frac14+\frac34\)
\(=\left(x-\frac12\right)^2+\frac34\ge\frac34>0\forall x\)
b: \(x^2+x+2\)
\(=x^2+x+\frac14+\frac74\)
\(=\left(x+\frac12\right)^2+\frac74\ge\frac74>0\forall x\)
c: \(-a^2+a-3\)
\(=-\left(a^2-a+3\right)\)
\(=-\left(a^2-a+\frac14+\frac{11}{4}\right)\)
\(=-\left(a-\frac12\right)^2-\frac{11}{4}\le-\frac{11}{4}<0\forall a\)
d:Đặt \(A=\frac{3x^2-x+1}{-4x^2+2x-1}\)
\(3x^2-x+1\)
\(=3\left(x^2-\frac13x+\frac13\right)\)
\(=3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}+\frac{11}{36}\right)\)
\(=3\left(x-\frac16\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\) (1)
\(-4x^2+2x-1\)
\(=-4\left(x^2-\frac12x+\frac14\right)\)
\(=-4\left(x^2-2\cdot x\cdot\frac14+\frac{1}{16}+\frac{3}{16}\right)\)
\(=-4\left(x-\frac14\right)^2-\frac34\le-\frac34<0\forall x\) (2)
Từ (1),(2) suy ra \(\frac{3x^2-x+1}{-4x^2+2x-1}<0\forall x\)
=>A<0 với mọi x

a: \(2x^2+2x+3\)
\(=2\left(x^2+x+\frac32\right)\)
\(=2\left(x^2+x+\frac14+\frac54\right)\)
\(=2\left(x+\frac12\right)^2+\frac52\ge\frac52\forall x\)
=>\(\frac{3}{2x^2+2x+3}\le3:\frac52=\frac65\forall x\)
Dấu '=' xảy ra khi \(x+\frac12=0\)
=>\(x=-\frac12\)
b: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
=>\(\frac{1}{-x^2+2x-2}\ge\frac{1}{-1}=-1\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1
c: \(3x^2+4x+15\)
\(=3\left(x^2+\frac43x+5\right)\)
\(=3\left(x^2+2\cdot x\cdot\frac23+\frac49+\frac{41}{9}\right)\)
\(=3\left(x+\frac23\right)^2+\frac{41}{3}\ge\frac{41}{3}\forall x\)
=>\(\frac{5}{3x^2+4x+15}\le5:\frac{41}{3}=\frac{15}{41}\)
=>\(-\frac{5}{3x^2+4x+15}\ge-\frac{15}{41}\forall x\)
Dấu '=' xảy ra khi \(x+\frac23=0\)
=>\(x=-\frac23\)
d: \(-4x^2+8x-5\)
\(=-4\left(x^2-2x+\frac54\right)\)
\(=-4\left(x^2-2x+1+\frac14\right)\)
\(=-4\left(x-1\right)^2-1<=-1\forall x\)
=>\(\frac{2}{-4x^2+8x-5}\ge\frac{2}{-1}=-2\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1

Bài 5:
a:
AMCD là hình vuông
=>CM⊥MA tại M
=>CM⊥AB tại M
MBFE là hình vuông
=>MB⊥ME tại M
=>ME⊥AB tại M
mà CM⊥AB tại M
và CM,ME có điểm chung là M
nên M,C,E thẳng hàng
Gọi K là giao điểm của AC và BE
AMCD là hình vuông
=>AC là phân giác của góc DAM
=>\(\hat{CAM}=\frac12\cdot\hat{DAM}=45^0\)
MBFE là hình vuông
=>BE là phân giác của góc MBF
=>\(\hat{MBE}=\hat{FBE}=\frac12\cdot\hat{MBF}=45^0\)
Xét ΔKAB có \(\hat{KAB}+\hat{KBA}=45^0+45^0=90^0\)
nên ΔKAB vuông tại K
=>AK⊥EB tại K
Xét ΔEAB có
AK,EM là các đường cao
AK cắt EM tại C
Do đó: C là trực tâm của ΔEAB
=>BC⊥AE
Bài 4:
a: Xét ΔADI vuông tại D và ΔAHI vuông tại H có
AI chung
\(\hat{DAI}=\hat{HAI}\)
Do đó: ΔADI=ΔAHI
=>AD=AH
mà AD=AB
nên AH=AB
Xét ΔAHK vuông tại H và ΔABK vuông tại B có
AK chung
AH=AB
Do đó: ΔAHK=ΔABK
b: ΔAHK=ΔABK
=>\(\hat{HAK}=\hat{BAK}\)
=>AK là phân giác của góc HAB
=>\(\hat{HAB}=2\cdot\hat{HAK}\)
\(\hat{DAH}+\hat{BAH}=\hat{BAD}\) (tia AH nằm giữa hai tia AB và AD)
\(\Rightarrow2\left(\hat{IAH}+\hat{HAK}\right)=90^0\)
=>\(2\cdot\hat{IAK}=90^0\)
=>\(\hat{IAK}=45^0\)

Bài 5:
a: \(\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
b: \(M=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1^3-3xy+3xy=1\)
\(N=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left\lbrack\left(x+y\right)^2-2xy\right\rbrack+6x^2y^2\)
\(=1^3-3xy\cdot1+3xy\left\lbrack1+2xy\right\rbrack-6x^2y^2\)
=1-3xy+3xy\(+6x^2y^2-6x^2y^2\)
=1
Bài 4:
a: \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x^2=5\)
=>\(x^3-6x^2+12x-8-x\left(x^3-1\right)+6x^2=5\)
=>\(x^3+12x-8-x^3+x=5\)
=>13x-8=5
=>13x=13
=>x=1
b: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
=>\(x^3-6x^2+12x-8-x^3+6x^2=4\)
=>12x-8=4
=>12x=12
=>x=1
c: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
=>\(x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1=28\)
=>\(9x^3+9x^2+27x+28-9x^3-6x^2-x=28\)
=>\(3x^2+26x=0\)
=>x(3x+26)=0
=>\(\left[\begin{array}{l}x=0\\ 3x+26=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-\frac{26}{3}\end{array}\right.\)
d: \(\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
=>\(x^6-3x^4+3x^2-1-\left(x^6-1\right)=0\)
=>\(-3x^4+3x^2=0\)
=>\(-3x^2\left(x^2-1\right)=0\)
=>\(\left[\begin{array}{l}x^2=0\\ x^2=1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\\ x=-1\end{array}\right.\)
e: \(\left(x+1\right)^3+\left(x-2\right)^3-2x^2\left(x-\frac32\right)=3\)
=>\(x^3+3x^2+3x+1+x^3-6x^2+12x-8-2x^3+3x^2=3\)
=>15x-7=3
=>15x=10
=>\(x=\frac{10}{15}=\frac23\)
f: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
=>\(6x^2+2-6x^2+12x-6=-10\)
=>12x-4=-10
=>12x=-6
=>\(x=-\frac{6}{12}=-\frac12\)
Bài 3:
a: \(A=x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3=\left(x+4\right)^3\)
Khi x=6 thì \(A=\left(6+4\right)^3=10^3=1000\)
b: \(B=x^3-6x^2+12x-8\)
\(=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3\)
\(=\left(x-2\right)^3\)
Khi x=22 thì \(B=\left(22-2\right)^3=20^3=8000\)
c: \(C=8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
Thay x=25,5 vào C, ta được:
\(C=\left(2\cdot25,5-1\right)^3=50^3=125000\)
d: \(D=1-x+\frac{x^2}{3}-\frac{x^3}{27}\)
\(=1^3-3\cdot1^2\cdot\frac13x+3\cdot1\cdot\left(\frac13x\right)^3-\left(\frac13x\right)^3=\left(1-\frac13x\right)^3\)
Thay x=-27 vào D, ta được:
\(D=\left\lbrack1-\left(-\frac13\right)\cdot27\right\rbrack^3=10^3=1000\)
e: \(E=\frac{x^3}{y^3}+\frac{6x^2}{y^2}+12\cdot\frac{x}{y}+8\)
\(=\left(\frac{x}{y}\right)^3+3\cdot\left(\frac{x}{y}\right)^2\cdot2+3\cdot\frac{x}{y}\cdot2^2+2^3\)
\(=\left(\frac{x}{y}+2\right)^3\)
Thay x=36;y=2 vào D, ta được:
\(D=\left(\frac{36}{2}+2\right)^3=\left(18+2\right)^3=20^3=8000\)
Bài 2:
a: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=\left(x-1\right)^3\)
b: \(8-12x+6x^2-x^3=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3=\left(2-x\right)^3\)
c: \(27+27x+9x^2+x^3\)
\(=x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3\)
\(=\left(x+3\right)^3\)
d: \(\left(x-y\right)^3+\left(x-y\right)^2+\frac13\left(x-y\right)+\frac{1}{27}\)
\(=\left(x-y\right)^3+3\cdot\left(x-y\right)^2\cdot\frac13+3\cdot\left(x-y\right)\cdot\left(\frac13\right)^2+\left(\frac13\right)^3\)
\(=\left(x-y+\frac13\right)^3\)


a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)
2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)
\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)
4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)
5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)
7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)
8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)
10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)
11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)
Bằng hình vẽ này thì câu hỏi ko trả lời được đâu em.
Hai tam giác vẽ chẳng chính xác gì hết, giao điểm cũng ko rõ ràng vị trí.
không giải được á