![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
mong mọi người giúp em với ạ!!!!!!!!!!!!!
cảm ơn mọi người rất nhiều
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D ( ) O
Bài làm
a) Xét tam giác DAB và tam giác CBA có:
AD = BC ( giả thiết )
\(\widehat{DAB}=\widehat{CBA}\)
AB chung
=> Tam giác DAB = tam giác CBA ( c.g.c )
=> BD = AC ( hai cạnh tương ứng )
b) Vì tam giác DAB = tam giác CBA ( cmt )
=> \(\widehat{ABD}=\widehat{BAC}\)( hai góc tương ứng )
Ta có: \(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)
\(\widehat{BAC}+\widehat{CAD}=\widehat{BAD}\)
Mà \(\widehat{ABD}=\widehat{BAC}\)( cmt )
\(\widehat{ABC}=\widehat{BAD}\)( giả thiết )
=> \(\widehat{DBC}=\widehat{CAD}\)
Xét tam giác CAD và tam giác DBC có:
BC = AD ( giả thiết )
\(\widehat{DBC}=\widehat{CAD}\)( cmt )
BD = AC ( cmt )
=> Tam giác CAD = tam giác DBC ( c.g.c )
=> \(\widehat{ADC}=\widehat{BCD}\)( hai góc tương ứng )
c) Gọi O là giao điểm của BD và AC
Xét tam giác OAB có:
\(\widehat{ABD}=\widehat{BAC}\)( cmt )
=> Tam giá OAB cân tại O
=>\(\widehat{ABD}+\widehat{BAC}=180^0-\widehat{AOB}\)
=> \(2\widehat{ABD}=180^0-\widehat{AOB}\) (1)
Xét tam giác OCD có:
\(\widehat{BDC}=\widehat{ACD}\)( Do tam giác CAD = tam giác DBC )
=> Tam giác OCD cân tại O
=> \(\widehat{BDC}+\widehat{ACD}=180^0-\widehat{DOC}\)
=> \(2\widehat{BDC}=180^0-\widehat{DOC}\) (2)
Ta có: \(\widehat{AOB}=\widehat{DOC}\) ( hai góc đối ) (3)
Từ (1), (2) và (3) => \(2\widehat{ABD}=2\widehat{BDC}\) => \(\widehat{ABD}=\widehat{BDC}\)
Mà hai góc này ở vị trí so le trong
=> AB // CD ( đpcm )
a) Xét tam giác DAB và tam giác CAB có :
AD = BC
\(\widehat{DAB}=\widehat{CBA}\)
Chung AB
\(\Rightarrow\)tam giác DAB = tam giác CAB ( c-g-c )
\(\Rightarrow AC=DB\)( 2 cạnh tương ứng )
b ) Xét tam giác ADC và tam giác BCD có :
AD = BC
AC = BD
chung CD
\(\Rightarrow\)tam giác ADC = tam giác BCD ( c-c-c )
\(\Rightarrow\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a, Có AD//BC (gt)
=>góc DAC = góc BCA (2 góc so le trong)
Xét tam giác ADC và tam giác CAB có:
góc CDA = góc BAC = 90
độ góc DAC = góc BCA (cmt) =>
tam giác ADC ~ tam giác CAB (g-g)
Câu b, Xét tam giác vuông ABC có:
AB2 + AC2 = BC2 (đ/l Py-ta-go)
Thay AB=6cm AC=8cm
=>BC=10cm
Có tam giác ADC ~ tam giác CAB (câu a)
=>Nhấp chuột và kéo để di chuyển
Thay AB=6cm AC=8cm BC=10cm =>DC=4,8cm
Câu c,
Áp dụng đ/l Py-ta-go vào tam giác vuông ADC, ta tính được AD=6,4cm
Tự chứng minh tam giác AID ~ CIB (g-g)\
=>\(\frac{AD}{BC}=\frac{AI}{CI}\)
=>\(\frac{AD}{BC+AD}=\frac{AI}{CI+AI}\) = \(\frac{AI}{AC}\)
=>AI=\(\frac{128}{41}\)
SBIC = SABC-SABI = \(\frac{1}{2}\)AC.AB -\(\frac{1}{2}\)AI.AB = \(\frac{1}{2}\)AB(AC - AI) = \(\frac{1}{2}\).6(8-\(\frac{128}{41}\)) = \(\frac{600}{41}\) \(\approx\)14,63cm2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=\overline{abc}+\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}\), ta có \(a,b,c\ne0\).
\(S=100a+10b+c+100a+10c+b+...+100c+10b+a\)
\(S=222\left(a+b+c\right)\)
Ta thấy \(222=2.3.37\) nên muốn \(S\) là số chính phương thì \(a+b+c=2^x.3^y.37^z\) với \(x,y,z\) là các số tự nhiên lẻ. Do đó \(x,y,z\ge1\) hay \(a+b+c\ge222\), vô lí.
Vậy không tồn tại số tự nhiên có 3 chữ số \(a,b,c\) thỏa mãn S là số chính phương.
mà Lê Song Phương ơi
mình cần bạn giải chi tiết ra đoạn từ dòng số 2 xuống dòng số 3 mình giải được:
2x(aaa+bbb+ccc)
2x111x(a+b+c)
222x(a+b+c)
đk bạn
185+185+185=555 nhé