Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MK hứng bài nào thì lm bài đấy nhé!
Bài 21:
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
<=> \(\dfrac{ab+bc+ca}{abc}=0\)
<=> \(ab+bc+ac=0\)
<=> \(ab+bc+ac+c^2=c^2\)
<=> \(\sqrt{ab+bc+ac+c^2}=\sqrt{c^2}\)
<=> \(\sqrt{\left(a+c\right)\left(b+c\right)}=\left|c\right|\) (1)
Mặt khác: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) ; \(a,b>0;c\ne0\) => \(c< 0\) (2)
Từ (1); (2) => \(\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)
<=> \(2\sqrt{\left(a+c\right)\left(b+c\right)}+2c=0\)
<=> \(\left(a+c\right)+2\sqrt{\left(a+c\right)\left(b+c\right)}+\left(b+c\right)=a+b\)
<=> \(\left(\sqrt{a+c}+\sqrt{b+c}\right)^2=\left(\sqrt{a+b}\right)^2\)
<=> \(\sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) => Đpcm
Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn
Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy
Các phương trình : \(x^2+ax+b=0\left(1\right)\) ; \(x^2+bx+c=0\left(2\right)\) ; \(x^2+cx+a=0\left(3\right)\)
Xét : \(\Delta_1=a^2-4b\) ; \(\Delta_2=b^2-4c\) ; \(\Delta_3=c^2-4a\)
Từ \(\begin{cases}a>b>c>0\\a+b+c=12\end{cases}\)\(\Rightarrow\begin{cases}a>4\\c< 4\\a>b>c>0\end{cases}\)
Ta có : \(a>b\Rightarrow4a>4b\Rightarrow a^2-4b>a^2-4a\Rightarrow\Delta_1>a\left(a-4\right)>0\)( vì a>4)
Do đó pt (1) luôn có nghiệm.
Tương tự : \(c< a\Rightarrow4c< 4a\Rightarrow c^2-4a< c^2-4c\Rightarrow\Delta_3< c\left(c-4\right)< 0\) ( vì 0<c<4)
Do đó pt (3) vô nghiệm.
Vậy có phương trình luôn có nghiệm và 1 phương trình vô nghiệm.