Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{1}{27}x^3-8y^6\)
\(=\left(\frac{1}{3}x\right)^3-\left(2y^2\right)^3\)
\(=\left(\frac{1}{3}x-2y^2\right)\left(\frac{1}{9}x^2+\frac{2}{3}xy^2+4y^4\right)\)
b) Ta có: \(t^2x^6-\frac{4}{9}y^4\)
\(=\left(tx^3\right)^2-\left(\frac{2}{3}y^2\right)^2\)
\(=\left(tx^3-\frac{2}{3}y^2\right)\left(tx^3+\frac{2}{3}y^2\right)\)
c) Ta có: \(64x^6+\frac{1}{27}y^3\)
\(=\left(4x^2\right)^3+\left(\frac{1}{3}y\right)^3\)
\(=\left(4x^2+\frac{1}{3}y\right)\left(8x^4-\frac{4}{3}x^2y+\frac{1}{9}y^2\right)\)
d) Ta có: \(\frac{1}{16}a^2x^6-y^4\)
\(=\left(\frac{1}{4}ax^3\right)^2-\left(y^2\right)^2\)
\(=\left(\frac{1}{4}ax^3-y^2\right)\left(\frac{1}{4}ax^3+y^2\right)\)
e) Ta có: \(m^4x^6-\frac{4}{25}y^2\)
\(=\left(m^2x^3\right)^2-\left(\frac{2}{5}y\right)^2\)
\(=\left(m^2x^3-\frac{2}{5}y\right)\left(m^2x^3+\frac{2}{5}y\right)\)
f) Ta có: \(27x^6-\frac{1}{64}y^3\)
\(=\left(3x^2\right)^3-\left(\frac{1}{4}y\right)^3\)
\(=\left(3x^2-\frac{1}{4}y\right)\left(9x^4+\frac{3}{4}x^2y+\frac{1}{16}y^2\right)\)
Ta biết rằng: Mọi đa thức f(x) sau khi khai triển đều có dạng: \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)
Ta thấy rằng: Thay x = 1 vào,ta được: \(f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\) đúng bằng tổng các hệ số của đa thức sau khi khai triển.
Áp dụng vào,ta có: Tổng các hệ số của đa thức f(x) là giá trị của f(x) tại x = 1:
\(=\left(1+4-5+1\right)^{2013}-\left(2-4+4-1\right)^{2014}=1-1=0\)
\(f\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2013}-\left(2.1^4-4.1^2+4.1-1\right)^{2014}\)
\(=1^{2013}-1^{2014}\)
\(=0\)
có bậc là 3 => ( \(^{m^2}\)- 25 ) \(^{x^4}\)= 0
hay ( \(m^2\)- 25 ) = 0 => \(m^2\)= 25
=> m = 5
Để f(x) là đa thức bậc 3 thì
\(\hept{\begin{cases}m^2-25=0\\20+4m\ne0\end{cases}}\Rightarrow\hept{\begin{cases}m=\pm5\\m\ne-5\end{cases}\Rightarrow}m=5\)
Vậy m = 5
a) \(\left(-\frac{1}{2}x^3y\right)^2\cdot2xy\cdot\left(-xy\right)^2=\left(-\frac{1}{2}\right)^2x^6y^2\cdot2xy\cdot\left(-1\right)^2x^2y^2\)
\(=\frac{1}{4}x^6y^2\cdot2xy\cdot x^2y^2=\left(\frac{1}{4}\cdot2\right)x^6x\cdot x^2\cdot y^2\cdot y\cdot y^2=\frac{1}{2}x^9y^5\)
b) \(\left(\frac{1}{3}x^3y\right)\left(xy^2\right)^2\cdot\frac{3}{2}x^2=\frac{1}{3}x^3y\cdot x^2y^4\cdot\frac{3}{2}x^2\)
\(=\left(\frac{1}{3}\cdot\frac{3}{2}\right)x^3\cdot x^2\cdot x^2\cdot y\cdot y^4=\frac{1}{2}x^7y^5\)
\(=\frac{1}{4}x^6y^2\cdot2xy\cdot x^2y^2=\left(\frac{1}{4}\cdot2\right)x^6x\cdot x^2\cdot y^2\cdot y\cdot y^2=\frac{1}{2}x^9y^5\)
\(3^x.\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}\right)=39\)
\(3^x.\frac{13}{27}=39\)
\(3^x=\frac{39.27}{13}=3.27=3.3^3=3^4\)
\(\Rightarrow x=4\)
\(\frac{3x-1}{2}\)=\(\frac{2y-3}{5}\)=\(\frac{3x-2y+2}{6x}\) .Tìm x và y
1)
a) \(2xy^2\left(x^2-2y\right)=2xy^2x^2-2xy^2\cdot2y=2x^3y^2-4xy^3\)
b) \(\left(x-3\right)\left(x+3\right)=x^2-3^2=x^2-9\)
c) \(\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
2)
a) \(2\left(x-4\right)-3\left(2x+7\right)=5\left(x-3\right)+12\) (1)
\(\Leftrightarrow2x-8-6x-21=5x-15+12\)
\(\Leftrightarrow2x-6x-5x=-15+12+8+21\)
\(\Leftrightarrow-9x=26\)
\(\Leftrightarrow x=-\dfrac{26}{9}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-\dfrac{26}{9}\right\}\)
b) \(x\left(x+2\right)-x=2\) (2)
\(\Leftrightarrow x^2+2x-x=2\)
\(\Leftrightarrow x^2+x=2\)
\(\Leftrightarrow x^2+x-2=2-2\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{-2;1\right\}\)
3)
\(2^m+2^n=2048\)
\(\Leftrightarrow2^m+2^n=2^8\)
\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=2^8\)
Nếu:
♦ m - n = 0 (vô lý)
♦ m - n > 0:
\(\Rightarrow2^{m-n}-1\) lẻ mà \(2^8\) chẵn suy ra \(2^{m-n}-1=1\Rightarrow m=n+1\)
\(\Rightarrow2^n=2^8\Rightarrow n=8;m=9\)
Vậy \(n=8;m=9\)
1) = (2m)2 - 32 = (2m+3)(2m-3)
2) = x2 - (2y)2 = (x+2y)(x-2y)
thiếu đề ko, thý nó kiểu j` ấy -_-