\(\frac{3n-5}{n+1}\)

                            Tìm n thuộ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

A E Z<=>3n-5 chia hết cho n+1

=>3.(n+1)-8 chia hết cho n+1

mà 3.(n+1) chia hết cho n+1

=>8 chia hết cho n+1

=>n+1 E Ư(8)={-8;-4;-2;-1;1;2;4;8}

=>n E {-9;-5;-3;-2;0;1;3;7}

vậy...

12 tháng 2 2016

Để A là số nguyên thì 3n-5 chia hết cho n+1

=>3n+3-8 chia hết cho n+1

=>3(n+1)+8 chia hết cho n+1

Mà 3(n+1) chia hết cho n+1

=>8 chia hết cho n+1

=>n+1\(\in\)Ư(8)={-8,-4,-2,-1,1,2,4,8}

=>n\(\in\){-8,-5,-3,-2,0,1,3,7}

25 tháng 4 2021

Để \(\frac{3n+7}{3n-1}\inℕ^∗\)thì \(3n+7⋮3n-1\)

\(\Leftrightarrow3n-1+8⋮3n-1\Leftrightarrow8⋮3n-1\)

\(\Rightarrow3n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

3n - 11-12-24-48-8
3n203-15-39-7
n2/3 ktm1-1/3 ktm5/3 ktm-13-7/3 ktm 
25 tháng 4 2021

Cảm ơn✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓ nhé! Love you

18 tháng 8 2018

a)

Để A thuộc Z thì ( dấu " : " là chia hết cho )

n + 1 : n - 2

n - 2 + 3 : n - 2

=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }

Sau đó tìm n là xong

18 tháng 8 2018

b) Cũng gần tương tự như phần a !

\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất 

mà n nguyên ( theo đề bài )

=> 3 : n - 3

Ta có bảng :

n - 31-13-3
n4260

Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0

26 tháng 3 2015

a.\(\frac{3.\left(n-12\right)+42}{3n-12}=3+\frac{42}{3n-12}\)

Vì 3 là số nguyên => \(\frac{42}{3n-12}\)cũng là số nguyên

=> 3n-12 là ước của 42 mà Ư(42)=1;2;3;6;7;42;-1;-2;-3;-6;-7;-42

Vì n là số nguyên

=> \(n\in\)( 5;6;18;3;2;-10)

b. \(\frac{3\left(n+7\right)-16}{n+7}=3-\frac{16}{n+7}\)

Vì 3 là số nguyên => \(\frac{16}{n+7}\)cũng là số nguyên 

=> n+7 là ước của 16 mà Ư(16)=1;2;4;16;-1;-2;-4;-16

=>\(n\in\)(-6;-5;-3;9;-8;-9;-11;-23)

24 tháng 12 2016

A=n+3 chia hết cho n+1

mà n+3 =(n+1)+2

vì n+1 chia hết cho n+1

nên A chia hết cho n+1 

khi2chia hết cho n+1

suy ra n+1 thuộc ước của 2

suy ra n+1 thuộc {1;2}

mà n thuộc Z  Suy ra n thuộc { 0;1}

Câu 2 dựa theo cách trên mà tự làm 

24 tháng 12 2016

\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)

Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}

n + 1-11-22
n-20-31

\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)

Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}

n - 41-117-17
n5321-13
4 tháng 3 2018

mình cần gấp nhé

4 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời  

23 tháng 3 2018

a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)

 <=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)

<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)

c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)

<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

20 tháng 12 2021

cục cức chấm mắm

22 tháng 4 2015

Để A \(\in\) Z thì n + 5 chia hết cho n - 2 

=> (n - 2) + 7 chia hết cho n - 2

Mà n - 2 chia hết cho n - 2

=> 7 chia hết cho n - 2

=> n - 2 \(\in\) Ư(7) = {-1; -7; 1; 7}

Ta có bảng sau: 

n - 2-11-77
n13-59

Vậy n \(\in\) {1; 3; -5; 9}