Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(A=y\left(x^4-y^4\right)-y\left(y^4-y^4\right)=0\)
=> đpcm
b) \(B=\left(\frac{1}{3}+2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) (đã sửa đề)
\(B=\left(\frac{1}{27}+8x^3\right)-\left(8x^3-\frac{1}{27}\right)\)
\(B=\frac{2}{27}\)
=> đpcm
c) \(C=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) (đã sửa đề)
\(C=x^3-3x^2+3x-1-x^3+1+3x^2-3x\)
\(C=0\)
=> đpcm
https://olm.vn/hoi-dap/question/118420.html
Bạn có thể tham khảo cách làm ở link này nhé!
M = ( x + 1 )3 - x3 + 1 - 3x( x + 1 )
= x3 + 3x2 + 3x + 1 - x3 + 1 - 3x2 - 3x
= 2
Vậy M không phụ thuộc vào biến ( đpcm )
N = ( 2x - 1 )3 - 6x( 2x - 1 )2 + 12x2( 2x - 1 ) - 8x3
= [ ( 2x - 1 ) - 2x ]3 ( HĐT số 4 )
= [ 2x - 1 - 2x ]3
= [ -1 ]3 = -1
Vậy N không phụ thuộc vào biến ( đpcm )
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
\(a\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)-18x+12\)
\(=6x^2+21x-2x-7-6x^2+5x-6x-5-18x+12\)
\(=0\left(đpcm\right)\)
\(b,\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)
\(=0\left(đpcm\right)\)
Lời giải:
\(C=(x+2)(x^2-2x+4)-x(x^2+3)+3x=x^3+2^3-x^3-3x+3x\)
\(=8\) là giá trị không phụ thuộc vào $x$ (đpcm)
\(D=(x^2-2)(x^4+2x^2+4)+(2-x^3)(2+x^3)\)
\(=(x^2)^3-2^3+2^2-(x^3)^2=-8+4=-4\) là giá trị không phụ thuộc vào $x$ (đpcm)
Lời giải:
\(A=(4x-3)(4x+3)-(4x+1)^2+8x=(4x)^2-3^2-(4x+1)^2+8x\)
\(=[4x-(4x+1)][4x+(4x+1)]-9+8x\)
\(=-(8x+1)-9+8x=-10\) không phụ thuộc vào giá trị của $x$
\(B=(x-2)^3-(12x+1)+x(6x-x^2)\)
\(=x^3-3.x^2.2+3.x.2^2-2^3-12x-1+6x^2-x^3\)
\(=-9\) không phụ thuộc vào giá trị $x$
Ta có đpcm.