\(A=\frac{1}{1^2}+\frac{1}{2^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

Mk chỉ làm đc bài 2 thôi!

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(\Rightarrow2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(\Rightarrow2S-S=6-\frac{3}{2^9}\)

\(\Rightarrow S=6-\frac{3}{2^9}\)

Chúc bạn học tốt ( sai thì đừng ném đá ) !

29 tháng 4 2018

Ta có :

A = \(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}\)\(\frac{1}{1.1}+\frac{1}{1.2}+...+\frac{1}{49.50}\)

A < \(1-1+1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)

A < 1 - 1/50 = 49/50 < 2

Vậy A < 2

17 tháng 3 2020

Bài 1:

a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)

\(=\frac{-15}{240}-\frac{16}{240}\)

\(=\frac{-31}{240}\)

b, \(=\frac{-10}{12}-\frac{-12}{12}\)

\(=\frac{2}{12}=\frac{1}{6}\)

c, \(=\frac{-30}{6}-\frac{1}{6}\)

\(=\frac{-31}{6}\)

Bài 2:

a, \(x=-\frac{1}{2}-\frac{3}{4}\)

\(x=-\frac{1}{4}\)

b,   \(\frac{1}{2}+x=-\frac{11}{2}\)

\(x=-\frac{11}{2}-\frac{1}{2}\)

\(x=-6\)

Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^

20 tháng 2 2020

Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

            \(\frac{1}{5^2}< \frac{1}{4.5}\)

             ...

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)  

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

Vậy A<\(\frac{3}{4}\)

20 tháng 2 2020

A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

Ta có : 122<11.2122<11.2

132<12.3132<12.3

142<13.4142<13.4
...
11002<199.10011002<199.100

=> 122122 + 132132 + ... + 1100211002 < 11.211.2 + 12.312.3 + ...+ 199.100199.100
Ta có : 11.2+12.3+...+199.10011.2+12.3+...+199.100

= 1 - 12+1213+...+199110012+12−13+...+199−1100

= 1 - 1100=99100<11100=99100<1

=> 122+132+142+...+11002<1122+132+142+...+11002<1

=> đpcm

Ta có : 12^2<11.2122<11.2

13^2<12.3132<12.3

14^2<13.4142<13.4
...
1100^2<199.10011002<199.100

=> 12^2122 + 13^2132 + ... + 1100^211002 < 11.211.2 + 12.312.3 + ...+ 199.100199.100
Ta có : 11.2+12.3+...+199.10011.2+12.3+...+199.100

= 1 - 12+1213+...+199110012+12−13+...+199−1100

= 1 - 1100=99100<11100=99100<1

=> 12^2+13^2+14^2+...+1100^2<1122+132+142+...+11002<1

=> đpcm

bản nãy lỗi

5 tháng 3 2020

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{4^{2018}}\)

=> \(3S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{2^{2018}}-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-...-\frac{2019}{4^{2019}}\)

=>3S=\(1+\frac{1}{4}+\frac{1}{4^2}+..+\frac{1}{2^{2018}}-\frac{2019}{4^{2019}}\)

còn lại tự giải nhé  

5 tháng 3 2020

Mình cảm ơn bạn.

11 tháng 5 2019

Câu 2 sai đề, thử rồi

2 tháng 5 2019

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}+\frac{1}{1}=2\)

\(\Rightarrow\)\(A< 2\left(đpcm\right)\)

chúc bạn học tốt!!!

2 tháng 5 2019

Bài 6 :

 2S = 6 + 3 + 3/2 + ... + 3/2^8

 2S = 6 - 3/2^9 + S

   S = 6 - 3/2^9

  Vậy S = 6 - 3/2^9

Bài 7 :

  Ta có : 

    A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2

  =)  A < 2

   Vậy A < 2

Bài 8 :

  Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )

 =) A < B

   Vậy A < B

Bài 9:

  Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)

  =)  A > B

   Vậy A > B