K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

\(\left(a+b+c\right)=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(\Rightarrow2ab+2bc+2ac=-2\)

\(\Rightarrow ab+bc+ac=-1\Rightarrow\left(ab+bc+ac\right)^2=1\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+2abc\left(a+b+c\right)=4\)

\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+0=4\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=4\)

Có \(\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\)

\(\Rightarrow a^4+b^4+c^4+2.4=4\)

Bn làm phần kết quả nhé

4 tháng 4 2016

1)a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> Đpcm

2Quy đồng hết lên là ra thui :) . Đặt thế này cho dễ : x = a/b , y = b/c , z = c/a => xyz = 1 

BĐT cần Cm <=> x² + y² + z² ≥ 1/x + 1/y + 1/z 

<=> x² + y² + z² ≥ xy + yz + zx ( BĐT quen thuộc đây mà ) 

<=> 2(x² + y² + z² ) - 2(xy + yz + zx) ≥ 0 

<=> (x - y)² + (y - z)² + (z - x)² ≥ 0 ( Luon dung ) => DPCM 

Dấu = xảy ra <=> x = y = z <=> a = b = c 

Vậy a²/b² + b²/c² + c²/a² ≥ c/b + b/a + a/c . Dấu = xảy ra <=> x = y = z <=> a = b = c 

- - - - - - - - - - - - -- - - - - -

19 tháng 12 2019

\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{^{^{ }}a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)

=\(\frac{a^2b-a^2c+b^2c-b^2a+c^2a-c^2b}{a^4b^2-a^4c^2+b^4c^2-b^4a^2+c^4a^2-c^4b^2}\)

*Rút gọn âm và dương đối nhau ( VD: \(a^2\)\(-a^2\)), còn lại bạn tự tìm thêm nhé :)

\(\frac{b-c+c-a+a-b}{b^2-c^2+c^2-a^2+a^2-b^2}\)

Ta lại rút gọn các cặp đối nhau ( như trên VD)

Kết quả cuối cùng là 0

19 tháng 12 2019

Đặt biểu thức đã cho là A

Xét tử: \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)\)

\(=\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-\left(a-b\right)\left(ca+bc\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ca-bc+c^2\right)\)\(=\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

Xét mẫu : làm tương tự như trên ta được 

\(a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)=\left(a^2-b^2\right)\left(a^2-c^2\right)\left(b^2-c^2\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)\left(a+c\right)\left(b-c\right)\left(b+c\right)\)

\(\Rightarrow A=\frac{1}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

13 tháng 6 2016

a(b^2 +c^2 + bc) + b(c^2 + a^2 +ac) + c(a^2 + b^2 + ab)

= a.b^2 + a.c^2 + b.c^2 + b.a^2 + c.a^2 + c.b^2 + 3abc

= (a.b^2 + b.a^2 +abc) + ( a.c^2 + c.a^2 + abc) + (c.b^2 + b.c^2 + abc)

= ab(a+b+c) + ac(a +b +c) + bc(a+b+c)

=(a+b+c)(ab+ac+bc)

7 tháng 9 2016

to vua noi roi

7 tháng 9 2016

câu a sử dụng hdt số 3

cau  b tach 4=2*2

cau c tach 9=3*3

cau d tach 1/4=1/2*1/2

10 tháng 2 2018

Ta có:

a + b + c = 0

\(\Rightarrow\) a = -b - c

\(\Rightarrow\) a2 = (-b - c)2

\(\Rightarrow\) a2 = b2 + 2bc + c2

\(\Rightarrow\) a2 - b2 - c2 = 2bc

\(\Rightarrow\) (a2 - b2 - c2)2 = (2bc)2

\(\Rightarrow\) a4 + b4 + c4 - 2a2b2 - 2a2c2 + 2b2c2 = 2b2c2

\(\Rightarrow\) a4 + b4 + c4 = 2a2b2 + 2a2c2 + 2b2c2

\(\Rightarrow\) 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2b2 + 2a2c2 + 2b2c2

\(\Rightarrow\) 2(a4 + b4 + c4) = (a2 + b2 + c2)2

\(\Rightarrow\) 2(a4 + b4 + c4) = 142

= 144

\(\Rightarrow\) a4 + b4 + c4 = 144/2 = 72