Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mọi số lớn hơn 0 đều có giá trị là dương .
Cho mk xin cái li ke
a: \(=2\sqrt{6}\cdot3\sqrt{6}-4\sqrt{3}\cdot3\sqrt{6}+5\sqrt{2}\cdot3\sqrt{6}-\dfrac{1}{4}\cdot2\sqrt{2}\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+30\sqrt{3}-3\sqrt{3}\)
\(=36-36\sqrt{2}+27\sqrt{3}\)
b: \(=\left(-2\cdot\sqrt[3]{\dfrac{9}{5}}+4\cdot\sqrt[3]{\dfrac{1}{3}}\right):2\sqrt[3]{\dfrac{1}{3}}\)
\(=-\sqrt[3]{\dfrac{9}{5}:\dfrac{1}{3}}+2\cdot1\)
\(\simeq-1.75+2=0.25\)
Hình bạn tự vẽ nhé !
* Ta có : AB2 = AC2 + BC2
AB2 = 0,9 + 1,2 = 2,1
==> AB ~ 1,5 (m)
sinB = AC/AB = 0,9/1,5 = 0,6
CosB= BC/AB = 1,2/1,5=0,8
tanB= AC/BC = 0,9/1,2=0,75
cotB= BC/AC=1,2/0,9=1,3
A B C 0,9 1,2
Ta có AC vg AB
\(BC^2\) = \(AC^2\)+ \(AB^2\)
Hay \(BC^2\) = \(0,9^2\)+ \(1,2^2\)
\(BC^2\)= \(2,25\)
=> \(BC\) = \(\sqrt{2,25}\) = \(1,5\)cm
\(\sin\widehat{B}\)= \(\frac{AC}{AB}\)=\(\frac{0,9}{1,5}\)= \(0,6\)
\(\cos\widehat{B}\)= \(\frac{BC}{AB}\)=\(\frac{1,2}{1,5}\)= \(0,8\)
\(\tan\widehat{B}\)= \(\frac{AC}{BC}\)= \(\frac{0,9}{1,2}\)= \(0,75\)
\(\cot\widehat{B}\)= \(\frac{BC}{AC}\)= \(\frac{1,2}{0,9}\)= \(\frac{4}{3}\)
\(\sin\widehat{C}\)= \(\cos\widehat{B}\)= \(0,8\)
\(\cos\widehat{C}\)= \(\sin\widehat{B}\)= \(0,6\)
\(\tan\widehat{C}\)= \(\cot\widehat{B}\)= \(\frac{4}{3}\)
\(\cot\widehat{C}\)= \(\tan\widehat{B}\)= \(0,75\)
Ta có \(2^{2n}+2^n+1⋮7\)\(\Leftrightarrow2^{2n}+2^n+1-7⋮7\)\(\Leftrightarrow2^{2n}+2^n-6⋮7\)\(\Leftrightarrow2^{2n}+6^n-4^n-6⋮7\)
\(\Leftrightarrow2^n\left(2^n+3\right)-2\left(2^n+3\right)⋮7\)\(\Leftrightarrow\left(2^n+3\right)\left(2^n-2\right)⋮7\)
Do đó\(\left(2^n+3\right)\left(2^n-2\right)=1.7\)
Sau đó bạn giải giống như giải PHƯƠNG TRÌNH NGHIỆM NGUYÊN MỘT ẨN SỐ là ra (ĐK: n là số tự nhiên)
Đ/s: n=2