\(\dfrac{1+2+2^2^{ }+2+...+2^{2008}}{1-2^{2009}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2015

Đặt \(A=1+2+2^2+2^3+...+2^{2008}\)

\(2A=2.\left(1+2+2^2+2^3+...+2^{2008}\right)\)

\(2A=2+2^2+2^3+...+2^{2009}\)\(2A-A=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)\)

\(A=2^{2009}-1\)

\(\Rightarrow S=\frac{2^{2009}-1}{1-2^{2009}}\)

\(S=\frac{2^{2009}-1}{-\left(-1+2^{2009}\right)}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)

6 tháng 4 2017

ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)

B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)

ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)

vậy A<B

ta có:2 tử(1+2+22+...+22008).2+

=2+22+23+...+22008+22009

2 tử - tử= tử

2+22+2^3+...+2^2008+2^2009-1+2+2^2+...+2^2008=2^2009-1

tử = 2^2009-1 mẫu = 1-2^2009 vậy s=-1

 

 

28 tháng 3 2018

hình như không đúng

30 tháng 3 2017

Cách 2:

Ta có: \(10A=\dfrac{10^{2008}+10}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\)

\(10B=\dfrac{10^{2009}+10}{10^{2009}+1}=1+\dfrac{9}{10^{2009}+1}\)

\(\dfrac{9}{10^{2008}+1}>\dfrac{9}{10^{2009}+1}\Rightarrow1+\dfrac{9}{10^{2008}+1}>1+\dfrac{9}{10^{2009}+1}\)

\(\Rightarrow10A>10B\Rightarrow A>B\)

Vậy A > B

17 tháng 4 2016

đặt tử =A,ta có:

tử=2A=2(1+2.2+2.22+...+2.22008)

=2.1+2.2+2.22+...+2.22008

=2+22+23+...+22009

2A-A=(2+22+23+...+22009)-(1+2+22+...+22008)

A=22009-1

thay A vào tử của S ta được:\(S=\frac{2^{2009}-1}{1-2^{2009}}=-1\)

3 tháng 2 2019

\(1-3+3^2-3^3+....-3^{2007}+3^{2008}\)

\(3S=3-3^2+3^3-3^4+...-3^{2008}+3^{2009}\)

\(4S=3^{2009}+1\)

\(\Rightarrow A=4S-1-3^{2009}\)

\(=\left(3^{2009}+1\right)-1-3^{2009}\)

\(=0\)