Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
a) \(A=x^2-2.10x+100+1\)
\(A=\left(x-10\right)^2+1>=1\)với mọi x
Dấu = xảy ra khi x-10 =0
=>x=10
Min A=1 khi x=10
b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3 mới làm dc
Đêm Noel..Đêm Noel~~~...Ma gõ cửa nhà em:))...Em đi ra~~~~Phi xe ga......Đâm chết năm con gà=)))))))...hố hố...... ~Merry Christmas~ ^-^ Noel đến đít rùi:))
\(2D=x^2-4xy+4y^2+x^2-12x+36+6y^2-36y+54+10\)\(2D=\left(x-2y\right)^2+\left(x-6\right)^2+6\left(y-3\right)^2+10\)
\(2D\ge10\) => D>=5 khi x=2y=6
\(F=3x^2+x+4=3\left(x^2+\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{47}{12}\)
F=\(3\left(x+\dfrac{1}{6}\right)^2+\dfrac{47}{12}\ge\dfrac{47}{12}\) khi x=-1/6
\(2E=4x^2-4xy+y^2+y^2-4y+4+3996\)
\(2E=\left(2x-y\right)^2+\left(y-2\right)^2+3996\ge3996\)
E>=1998 khi 2x=y=2
bài 4;
\(B=-3x^2+x=-3\left(x^2-\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{1}{12}\)
\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)
khi x=1/6
bài 5:
\(a,\left(x+2\right)^2=0=>x=-2\)
\(b,\left(x-6\right)^2+\left(y+1\right)^2=0\rightarrow\left\{{}\begin{matrix}x=6\\y=-1\end{matrix}\right.\)
c,\(x^2+2y^2-2xy-2x+2=0\)
\(x^2-4xy+4y^2+x^2-4x+4=0\)
\(\left(x-2y\right)^2+\left(x-2\right)^2=0\rightarrow\left\{{}\begin{matrix}x=2y\\x=2\end{matrix}\right.\)
đây nhá bạn, khá tốn time của mình
x2.( x2 + 4 ) - x2 - 4
= x2.( x2 + 4 ) - ( x2 + 4 )
= ( x2 + 4 ).( x2 - 1 )
= ( x2 + 4 ) .( x - 1 ).( x + 1 )
Sửa: Áp dụng chứng minh \(x^2+y^2>9\)
Ta có: \(x^2+y^2-2xy=\left(x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow x^2+y^2\ge2xy\)( đpcm )
Áp dụng: Với \(xy=5\)ta có: \(x^2+y^2\ge2.5=10\)
\(\Rightarrow x^2+y^2>9\)( đpcm )
2x5 - 7x4 + 5x3 + 5x2 - 7x + 2 = 0
<=> 2x5-4x4-3x4+6x3-x3+2x2+3x2-6x-x+2=0
<=> 2x4(x-2)-3x3(x-2)-x2(x-2)+3x(x-2)-(x-2)=0
<=>(x-2)(2x4-3x3-x2+3x-1)=0
<=>(x-2)(2x4-x3-2x3+x2-2x2+x+2x-1)=0
<=>(x-2)[x3(2x-1)-x2(2x-1)-x(2x-1)+2x-1]=0
<=>(x-2)(2x-1)(x3-x2-x+1)=0
<=>(x-2)(2x-1)[x2(x-1)-(x-1)]=0
<=>(x-2)(2x-1)(x-1)(x2-1)=0
<=>(x-2)(2x-1)(x-1)2(x+1)=0
=> x-2=0 => x=2
hoặc 2x-1=0=>x=1/2
hoặc x-1=0=>x=1
hoặc x+1=0=>x=-1
Vậy...
\(2x^5-7x^4+5x^3+5x^2-7x+2=0\)
\(\Leftrightarrow\left(2x^5-4x^4+2x^3\right)-\left(3x^4-6x^3+3x^2\right)-\left(3x^3-6x^2+3x\right)+\left(2x^2-4x+2\right)=0\)
\(\Leftrightarrow2x^3\left(x^2-2x+1\right)-3x^2\left(x^2-2x+1\right)-3x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(2x^3-3x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^3+2x^2-5x^2-5x+2x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[2x^2\left(x+1\right)-5x\left(x+1\right)+2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(2x^2-5x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(2x^2-4x-x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left[2x\left(x-2\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\)\(x-1=0\)
hoặc \(x+1=0\)
hoặc \(x-2=0\)
hoặc \(2x-1=0\)
\(\Leftrightarrow\)\(x=1\)
hoặc \(x=-1\)
hoặc \(x=2\)
hoặc \(x=\frac{1}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-1;2;\frac{1}{2}\right\}\)