K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

x=3

b,Dat an 2x^2-3x-1=a la dc

8 tháng 7 2016

a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)

Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)

\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)

Thế vào rồi giải tiếp em nhé.

15 tháng 8 2018

a) \(A=x^2-2.10x+100+1\)

\(A=\left(x-10\right)^2+1>=1\)với mọi x

Dấu = xảy ra khi x-10 =0

                           =>x=10

Min A=1 khi x=10

b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3  mới làm dc

15 tháng 8 2018

a)A= \(\left(x^2-2.x.10+100\right)+1\)

=\(\left(x-10\right)^2+1>=1\)

Dấu "=" xảy ra <=> \(\left(x-10\right)^2=0\)<=> \(x-10=0\)<=>\(x=10\)

Vậy MinA = 1 khi x=10

24 tháng 12 2018

Đêm Noel..Đêm Noel~~~...Ma gõ cửa nhà em:))...Em đi ra~~~~Phi xe ga......Đâm chết năm con gà=)))))))...hố hố...... ~Merry Christmas~ ^-^ Noel đến đít rùi:))

16 tháng 8 2018

\(2D=x^2-4xy+4y^2+x^2-12x+36+6y^2-36y+54+10\)\(2D=\left(x-2y\right)^2+\left(x-6\right)^2+6\left(y-3\right)^2+10\)

\(2D\ge10\) => D>=5 khi x=2y=6

\(F=3x^2+x+4=3\left(x^2+\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{47}{12}\)

F=\(3\left(x+\dfrac{1}{6}\right)^2+\dfrac{47}{12}\ge\dfrac{47}{12}\) khi x=-1/6

\(2E=4x^2-4xy+y^2+y^2-4y+4+3996\)

\(2E=\left(2x-y\right)^2+\left(y-2\right)^2+3996\ge3996\)

E>=1998 khi 2x=y=2

bài 4;

\(B=-3x^2+x=-3\left(x^2-\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{1}{12}\)

\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)

khi x=1/6

bài 5:

\(a,\left(x+2\right)^2=0=>x=-2\)

\(b,\left(x-6\right)^2+\left(y+1\right)^2=0\rightarrow\left\{{}\begin{matrix}x=6\\y=-1\end{matrix}\right.\)

c,\(x^2+2y^2-2xy-2x+2=0\)

\(x^2-4xy+4y^2+x^2-4x+4=0\)

\(\left(x-2y\right)^2+\left(x-2\right)^2=0\rightarrow\left\{{}\begin{matrix}x=2y\\x=2\end{matrix}\right.\)

đây nhá bạn, khá tốn time của mình huhu

7 tháng 7 2019

đề là gì? 

mk cần gấp

7 tháng 7 2019

x2.( x2 + 4 ) - x2 - 4

= x2.( x2 + 4 ) - ( x2  + 4 )

= ( x2 + 4 ).( x2 - 1 )

= ( x2 + 4 ) .( x - 1 ).( x + 1 )

27 tháng 8 2020

Sửa: Áp dụng chứng minh \(x^2+y^2>9\)

Ta có: \(x^2+y^2-2xy=\left(x-y\right)^2\ge0\forall x,y\)

\(\Rightarrow x^2+y^2\ge2xy\)( đpcm )

Áp dụng: Với \(xy=5\)ta có: \(x^2+y^2\ge2.5=10\)

\(\Rightarrow x^2+y^2>9\)( đpcm )

17 tháng 2 2020

2x5 - 7x4 + 5x3 + 5x2 - 7x + 2 = 0

<=> 2x5-4x4-3x4+6x3-x3+2x2+3x2-6x-x+2=0

<=> 2x4(x-2)-3x3(x-2)-x2(x-2)+3x(x-2)-(x-2)=0

<=>(x-2)(2x4-3x3-x2+3x-1)=0

<=>(x-2)(2x4-x3-2x3+x2-2x2+x+2x-1)=0

<=>(x-2)[x3(2x-1)-x2(2x-1)-x(2x-1)+2x-1]=0

<=>(x-2)(2x-1)(x3-x2-x+1)=0

<=>(x-2)(2x-1)[x2(x-1)-(x-1)]=0

<=>(x-2)(2x-1)(x-1)(x2-1)=0

<=>(x-2)(2x-1)(x-1)2(x+1)=0

=> x-2=0 => x=2

hoặc 2x-1=0=>x=1/2

hoặc x-1=0=>x=1

hoặc x+1=0=>x=-1

Vậy...

17 tháng 2 2020

\(2x^5-7x^4+5x^3+5x^2-7x+2=0\)

\(\Leftrightarrow\left(2x^5-4x^4+2x^3\right)-\left(3x^4-6x^3+3x^2\right)-\left(3x^3-6x^2+3x\right)+\left(2x^2-4x+2\right)=0\)

\(\Leftrightarrow2x^3\left(x^2-2x+1\right)-3x^2\left(x^2-2x+1\right)-3x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)\left(2x^3-3x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(2x^3+2x^2-5x^2-5x+2x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[2x^2\left(x+1\right)-5x\left(x+1\right)+2\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(2x^2-5x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(2x^2-4x-x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left[2x\left(x-2\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\)\(x-1=0\)

hoặc  \(x+1=0\)

hoặc \(x-2=0\)

hoặc \(2x-1=0\)

\(\Leftrightarrow\)\(x=1\)

hoặc \(x=-1\)

hoặc \(x=2\)

hoặc \(x=\frac{1}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-1;2;\frac{1}{2}\right\}\)