\(\frac{3}{2^2}\times\frac{8}{3^2}\times\frac{15}{4^2}\times\frac{24}{5^2}...\frac{6...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

\(\frac{3}{2^2}\times\frac{8}{3^2}\times\frac{15}{4^2}\times\frac{24}{5^2}\times...\times\frac{624}{25^2}\)

\(=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times...\times\frac{24.26}{25.25}\)

\(=\frac{1\times2\times3\times...\times24}{2\times3\times4\times...\times25}\times\frac{3\times4\times5\times...\times26}{2\times3\times4\times...\times25}\)

\(=\frac{1}{25}\times13\)

 \(=\frac{13}{25}\)

27 tháng 4 2018

No, Thank!

11 tháng 4 2015

\(E=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}...\frac{9^2}{8.10}=\frac{\left(2.3.4...9\right)^2}{1.2.\left(3.4...8\right)^2.9.10}=\frac{2^2.9^2}{1.2.9.10}=\frac{18}{10}=\frac{9}{5}\)

22 tháng 4 2024

Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:

\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]

Sau đó, ta thực hiện các phép tính:

1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]

2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]

Kết quả là:
\[\frac{997920}{7621237680}\]

Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:

\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]

11 tháng 4 2019

\(1\frac{13}{15}\cdot3\cdot(0,5)^2\cdot3+\left[\frac{8}{15}-1\frac{19}{60}:1\frac{23}{24}\right]\)

\(=\frac{28}{15}\cdot3\cdot0,5\cdot0,5\cdot3+\left[\frac{8}{15}-\frac{79}{60}:\frac{47}{24}\right]\)

\(=\frac{28}{5}\cdot0,25\cdot3+\left[\frac{32}{60}-\frac{79}{60}\cdot\frac{24}{47}\right]\)

\(=\frac{28}{5}\cdot\frac{25}{100}\cdot3+\left[\frac{32}{60}-\frac{158}{235}\right]\)

\(=\frac{28}{5}\cdot\frac{1}{4}\cdot3+\frac{-98}{705}=\frac{7}{5}\cdot1\cdot3+\frac{-98}{705}\)

Đến đây là tính dễ rồi :v

\((-3,2)\cdot\frac{-15}{64}+\left[0,8-2\frac{4}{15}\right]:1\frac{23}{24}\)

\(=\frac{-32}{10}\cdot\frac{-15}{64}+\left[\frac{8}{10}-\frac{34}{15}\right]:\frac{47}{24}\)

\(=\frac{-32\cdot(-15)}{10\cdot64}+\left[\frac{4}{5}-\frac{34}{15}\right]:\frac{47}{24}\)

\(=\frac{-1\cdot(-3)}{2\cdot2}+\frac{4\cdot3-34}{15}:\frac{47}{24}\)

\(=\frac{3}{4}+\frac{-22}{15}:\frac{47}{24}\)

\(=\frac{3}{4}+\frac{-517}{180}=\frac{-191}{90}\)

Bài 2 : \(\frac{2\cdot(-13)\cdot9\cdot10}{(-3)\cdot4\cdot(-5)\cdot26}=\frac{1\cdot(-1)\cdot3\cdot2}{(-1)\cdot2\cdot(-1)\cdot2}=\frac{1\cdot3}{-1\cdot2}=\frac{3}{-2}=\frac{-3}{2}\)

\(\frac{15\cdot8+15\cdot4}{12\cdot3}=\frac{15\cdot(8+4)}{12\cdot3}=\frac{15\cdot12}{12\cdot3}=\frac{15}{3}=5\)

22 tháng 4 2024

Bài 1: Tìm \( x \)

\[
x - \frac{25\%}{100}x = \frac{1}{2}
\]

Để giải phương trình này, trước hết chúng ta phải chuyển đổi phần trăm thành dạng thập phân:

\[
\frac{25\%}{100} = 0.25
\]

Phương trình ban đầu trở thành:

\[
x - 0.25x = \frac{1}{2}
\]

Tổng hợp các hạng tử giống nhau:

\[
1x - 0.25x = \frac{1}{2}
\]
\[
0.75x = \frac{1}{2}
\]

Giải phương trình ta được:

\[
x = \frac{\frac{1}{2}}{0.75} = \frac{2}{3}
\]

Vậy, \( x = \frac{2}{3} \)

Bài 2: Tính hợp lý

a) \[
\frac{5}{-4} + \frac{3}{4} + \frac{4}{-5} + \frac{14}{5} - \frac{7}{3}
\]

Chúng ta cần tìm một mẫu số chung cho tất cả các phân số. Mẫu số chung nhỏ nhất là 60.

\[
= \frac{75}{-60} + \frac{45}{60} + \frac{-48}{60} + \frac{168}{60} - \frac{140}{60}
\]
\[
= \frac{75 + 45 - 48 + 168 - 140}{60}
\]
\[
= \frac{100}{60} = \frac{5}{3}
\]

b) \[
\frac{8}{3} \times \frac{2}{5} \times \frac{3}{10} \times \frac{10}{92} \times \frac{19}{92}
\]

Tích của các phân số là:

\[
= \frac{8 \times 2 \times 3 \times 10 \times 19}{3 \times 5 \times 10 \times 92 \times 92}
\]
\[
= \frac{9120}{4131600} = \frac{57}{25825}
\]

c) \[
\frac{5}{7} \times \frac{2}{11} + \frac{5}{7} \times \frac{9}{14} + \frac{1}{5}
\]

Tích của các phân số là:

\[
= \frac{10}{77} + \frac{45}{98} + \frac{1}{5}
\]
\[
= \frac{980}{7546} + \frac{3485}{7546} + \frac{15092}{75460}
\]
\[
= \frac{2507}{7546}
\]

19 tháng 3 2019

biết làm bài 1 thôi

\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)

\(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)

lượt bỏ đi còn :

\(\frac{1000}{2}=500\)

11 tháng 7 2019

1) ( \(\frac{55}{3}\): 15 + \(\frac{26}{3}\) . \(\frac{7}{2}\)) : [(\(\frac{37}{3}\) + \(\frac{62}{7}\)) . \(\frac{7}{18}\)] : \(\frac{-1704}{445}\)

= ( \(\frac{55}{3}\). \(\frac{1}{15}\) + \(\frac{91}{3}\)) : [ \(\frac{445}{21}\) . \(\frac{7}{18}\)] . \(\frac{-445}{1704}\)

= ( \(\frac{11}{9}\)+ \(\frac{91}{3}\)) : \(\frac{445}{54}\). \(\frac{-445}{1704}\) = \(\frac{284}{9}\). \(\frac{54}{445}\). \(\frac{-445}{1704}\)

= \(\frac{284}{9}\). (\(\frac{54}{445}\). \(\frac{-445}{1704}\))

= \(\frac{284}{8}\). \(\frac{-9}{284}\)

= \(\frac{-9}{8}\)

3 tháng 7 2016

\(B=\frac{12}{11}x\frac{13}{12}x.......x\frac{16}{15}\)

\(=\frac{16}{11}\)