Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(c^2=\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\ge\frac{c^2}{a^2+b^2}\) (đpcm)
Nếu làm như kia thì fải là nhỏ hơn hoặc bằng chứ
Nhân chia đổi chiều mà
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Đặt \(A=9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x+1+1\)
\(=\left(3x+1\right)^2+1\)
Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)
Hay \(A\ge1>0;\forall x\)
Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức
\(a,9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x.1+1^2+1\)
\(=\left(3x-1\right)^2+1\)
Vì\(\left(3x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)
\(\Rightarrow9x^2-6x+2>0\forall x\)
\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
\(\Rightarrow x^2+x+1>0\forall x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)
\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)
\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)
\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)
\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn chỉ cần để ý điều này thôi: \(\left(x-\frac{1}{x}\right)^2=x^2-2.x.\frac{1}{x}+\frac{1}{x^2}=x^2-2+\frac{1}{x^2}\)
Do đó giả thiết viết lại thành:
\(\left(a^2-2+\frac{1}{a^2}\right)+\left(b^2-2+\frac{1}{b^2}\right)+\left(c^2-2+\frac{1}{c^2}\right)=0\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(b-\frac{1}{b}\right)^2+\left(c-\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-\frac{1}{a}=0\\b-\frac{1}{b}=0\\c-\frac{1}{c}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{a}\\b=\frac{1}{b}\\c=\frac{1}{c}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=1\\b^2=1\\c^2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a^2\right)^{1010}=1^{1010}\\\left(b^2\right)^{1010}=1^{1010}\\\left(c^2\right)^{1010}=1^{1010}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^{2020}=1\\b^{2020}=1\\c^{2010}=1\end{matrix}\right.\) \(\Leftrightarrow a^{2020}+b^{2020}+c^{2020}=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)
\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
d) Xem lại đề
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
\(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow\left(x^2+5x\right)-\left(2x+10\right)=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
b.
\(2x^2+3x-5=0\)
\(\Leftrightarrow2x^2-2x+5x-5=0\)
\(\Leftrightarrow\left(2x^2-2x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{2}\\x=1\end{matrix}\right.\)
bài 2:
ĐKXĐ: x khác -1
\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\)
\(\Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}=\dfrac{2x+3}{x+1}\)
\(\Leftrightarrow1-x+3x+3=2x+3\)
\(\Leftrightarrow0x=-1\)
\(\Leftrightarrow x\in\varnothing\)
Suy ra pt vô nghiệm
b.
ĐKXĐ: x khác \(\dfrac{3}{2}\)
\(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
\(\Leftrightarrow\dfrac{x^2+4x+4}{2x-3}-\dfrac{2x-3}{2x-3}=\dfrac{x^2+10}{2x-3}\)
\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\dfrac{3}{2}\) ( loại)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{a) }3x+6=8x+3\)
\(\Leftrightarrow3x-8x=3-6\)
\(\Leftrightarrow-5x=-3\)
\(\Leftrightarrow x=\frac{-3}{-5}=\frac{3}{5}\)
\(\text{Câu b và câu c bạn ghi rõ lại giùm}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b. Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}\)
\(\Rightarrow\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)< 2^{16}\)
\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)
\(\dfrac{x^2-y^2}{x^2+y^2}=\dfrac{\left(x+y\right)\left(x^2-y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)
Như vậy cần so sánh:
\(\left(x-y\right)\left(x^2+y^2\right)\) và \(\left(x+y\right)\left(x^2-y^2\right)\)
Cần so sánh:
\(x\left(x^2+y^2\right)-y\left(x^2+y^2\right)\) và \(x\left(x^2-y^2\right)+y\left(x^2-y^2\right)\)
\(x^3+xy^2-yx^2-y^3\) và \(x^3-xy^2+yx^2-y^3\)
\(\left(x^3-y^3\right)+xy^2-yx^2\) và \(\left(x^3-y^3\right)-xy^2+yx^2\)
Cần so sánh:
\(xy^2-yx^2\) và \(yx^2-xy^2\)
Cộng cả 2 vế với \(xy^2\) và \(yx^2\)
Cần so sánh:
\(xy^2-yx^2+xy^2+yx^2\) và \(yx^2-xy^2+xy^2+yx^2\)
Cần so sánh
\(2xy^2\) và \(2yx^2\)
\(xy^2\) và \(yx^2\)
Xét các trường hợp nhỏ hơn,lớn hơn,bằng
\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1< 2^{16}\)
ai h minh minh h lai cho
Do là hơi dài, có tới 10 số 0, cho nên mik bỏ mấy cái số 0 nha vì đều là 10 số, có gì bạn ghi thêm 10 số
\(A=\)\(\frac{2,4}{1,4\cdot2}\)\(+\)\(2,2\)
\(B=\)\(\frac{2,2}{1,2\cdot2}\)\(+\)\(2,2\)
\(\text{Hạng tử thứ 2 đã = nhau giờ thì xét Hạng tử 1}\)
\(\frac{2,4}{1,4\cdot2}\)\(=\)\(\frac{2,4}{2,8}=1-\frac{0,4}{2,8}\)
\(\frac{2,2}{1,2\cdot2}=\frac{2,2}{2,4}=1-\frac{0,2}{2,4}=1-\frac{0,4}{4,8}\)
\(\frac{0,4}{2,8}>\frac{0,4}{4,8}\)
suy ra hạng tử của A < B
\(A< B\)