Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
a, không nhìn rõ
b, \(\dfrac{a+2\sqrt{a}+1}{a-1}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông
Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn
Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy
\(\sqrt{15+2\sqrt{5}-\sqrt{21-4\sqrt{5}}}\)
\(=\sqrt{15+2\sqrt{5}-\sqrt{\left(2\sqrt{5}-1\right)^2}}\)
\(=\sqrt{15+2\sqrt{5}-2\sqrt{5}+1}\)
\(=\sqrt{16}=4\)
Bài 27:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
b: \(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+\sqrt{x}+1}\)
c: Vì \(x+\sqrt{x}+1>0\)
nên \(A=\dfrac{2}{x+\sqrt{x}+1}>0\)
1) Thay \(x=16\)vào B ta đc
\(\frac{16-\sqrt{16}}{\sqrt{16}-2}=6\)
Vậy B =6 với x=16
2)\(A=\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}}{2-\sqrt{x}}-\frac{2\sqrt{x}+8}{x-4}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{x-4}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}-\frac{2\sqrt{x}+8}{x-4}\)
\(=\frac{x-\sqrt{x}-2}{x-4}-\frac{x+2\sqrt{x}}{x-4}-\frac{2\sqrt{x}+8}{x-4}\)
\(=\frac{-5\sqrt{x}-10}{x-4}\)
\(=\frac{-5\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{-5}{\sqrt{x}-2}\)
3) Để \(B-A< 0\)\(\Leftrightarrow\frac{x-\sqrt{x}}{\sqrt{x}-2}-\frac{-5}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow\frac{x-\sqrt{x}+5}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{x}+5>0\\\sqrt{x}-2< 0\end{cases}}\)( vì \(x-\sqrt{x}+5>0;\forall x\))
\(\Leftrightarrow x< 4\) Kết hợp với điều kiện đề bài
\(\Rightarrow0\le x< 4\) Mà x nguyên
\(\Rightarrow x\in\left\{0;1;2;3\right\}\)
Vậy ...