\(\frac{n+3}{n-2}\) là số nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

Để \(\frac{n+3}{n-2}\)là số nguyên thì n + 3 chia hết n - 2

<=> (n - 2) + 5 chia hết n - 2

=> 5 chia hết n - 2

=> n - 2 E Ư(5) = {-1;1;-5;5}

Ta có: 

n - 2-11-55
n13-37
20 tháng 6 2019

n + 3 chia hết n - 2

=> n - 2 thuộc Ư(5) = {1,5,-1,-5}

=> n thuộc { 3, 7, 1, -3 }

20 tháng 6 2019

Ta có : \(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)

Để \(\left(n+3\right)⋮\left(n-2\right)\)thì \(5⋮\left(n-2\right)\)hay \(\left(n-2\right)\)là \(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

Do đó :

n - 21-15-5
n317-3

Vậy ..........................

~ Hok tốt ~

5 tháng 5 2016

a) Để A nguyên => 5 chia hết cho n - 2

n - 2 thuộc U(5) = {-5 ; -1 ; 1 ; 5}

n - 2 = -5 => n = -3

n - 2 = -1 => n = 1

n - 2 = 1 => n = 3

n - 2 = 5 => n =  7

Vậy n thuộc {-3 ; 1 ; 3 ; 7}

b)  \(\frac{y}{3}-\frac{1}{x}=\frac{1}{3}\Leftrightarrow\frac{y}{3}-\frac{1}{3}=\frac{1}{x}\)

\(\frac{y-1}{3}=\frac{1}{x}\) <=> (y-1).x = 3

(y-1).x = 1.3 = (-1).(-3)

TH1: y - 1 = 1 => y = 2

=> x = 3

TH2: y - 1 = 3 => y = 4

=> x = 1

TH3: y - 1 = -1 => y = 0

=> x = -3

TH4: y - 1 = -3 => y = -2

=> x = -1

Vậy (x ; y) là (2 ; 3) ; (4 ; 1) ; (0 ; -3) ; (-2 ; -1)

5 tháng 5 2016

a) Để A là 1 số nguyên thì n-2 \(\in\)  Ư(5)={-1;-5;1;5}

Nếu n-2=-1 thì n=1

Nếu n-2=-5 thì n=-3

Nếu n-2=1 thì n=3

Nếu n-2=5 thì n=7

=>n \(\in\) {-3;1;3;7}

b) câu b này mik ko biết làm leuleu

31 tháng 10 2016

1.

a) \(A=2+\frac{1}{n-2}\)

\(A\in Z\Rightarrow n-2\in U\left(1\right)=\left\{-1,1\right\}\Rightarrow n\in\left\{1;3\right\}\)

b) Gọi \(d=ƯC\left(2n-3;n-2\right)\)

\(\Rightarrow\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\)

\(\Rightarrow\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\)

\(\Rightarrow2n-3-2\left(n-2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

Vậy A là phân số tối giản.

2.

- Từ giả thiết ta có \(P=3k+1\) hoặc \(P=3k+2\) ( \(k\in N\)* )

- Nếu \(P=3k+2\) thì \(P+4=3k+6\) là hợp số ( loại )

- Nếu \(P=3k+1\) thì \(P-2014=3k-2013\) chia hết cho 3

Vậy p - 2014 là hợp số

31 tháng 10 2016

Cám ơn mày nha Trân

13 tháng 2 2018

\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)

\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)

\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)

\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=3-\left(1-\frac{1}{8}\right)\)

\(A=3-\frac{5}{8}\)

\(A=\frac{19}{8}\)

20 tháng 6 2019

\(A=\)\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)

\(Đkxđ\Leftrightarrow x-2\ne0\Rightarrow x\ne2\)

Để\(1+\frac{5}{n-2}\in Z^-\Rightarrow\frac{5}{n-2}\in Z\) và \(\frac{5}{n-2}\le-1\)

\(\frac{5}{n-2}\in Z\Leftrightarrow5\)\(⋮\)\(n-2\)\(\Rightarrow n-2\inƯ_5\)

Mà \(Ư_5=\left\{1;5;-1;-5\right\}\)

* Nếu \(n-2=1\Rightarrow A=\frac{5}{1}=5\left(ktm\right)\)

* Nếu \(n-1=5\Rightarrow A=\frac{5}{5}=1\left(ktm\right)\)

* Nếu \(n-1=-1\Rightarrow A=\frac{5}{-1}=-5\left(tm\right)\)

\(n-1=-1\Rightarrow n=0\)

* Nếu \(n-1=-5\Rightarrow A=\frac{5}{-5}=-1\left(tm\right)\)

\(n-1=-5\Rightarrow n=-4\)

Vậy \(n\in\left\{0;-4\right\}\)

5 tháng 7 2021

Bài 1 :

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)

\(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)

\(\frac{5}{x}=\frac{1+2y}{6}\)

=>  x ( 1+2y ) = 5 . 6 

=> x ( 2y+1 ) = 30 

=> x;2y+1 \(\in\) Ư(30)

vì 2y+1 là số lẻ nên 2y+1 \(\in\) {1;3;5;15;-1;-3;-5;-15}

             Ta có bảng 

2y+113515-1-3-5-15
x301062-30-10-6-2
y0127-1-2-3-8

Vậy các cặp x;y  tìm được là \(\hept{\begin{cases}x=30\\y=0\end{cases};\hept{\begin{cases}x=20\\y=2\end{cases}};\hept{\begin{cases}x=6\\y=2\end{cases};\hept{\begin{cases}x=2\\y=7\end{cases}};}\hept{\begin{cases}x=-30\\y=-1\end{cases};}\hept{\begin{cases}x=-10\\y=-2\end{cases};\hept{\begin{cases}x=-6\\y=-3\end{cases};\hept{\begin{cases}x=-2\\y=-8\end{cases}}}}}\) 

5 tháng 7 2021

Bài 2 , b 

(3n+2) \(⋮\) n-1

=> 3(n-1) + 5 \(⋮\) n-1

Vì 3(n-1) \(⋮\) n-1  => 5 \(⋮\) n-1

hay n-1 \(\in\) Ư(5)= {1;5;-1;-5}

 n \(\in\) {2;6;0;-4}

15 tháng 2 2018

gọi d là ƯC(3n-2; 4n-3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)

\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)

\(\Rightarrow\) \(1\) \(⋮\) \(d\)

\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)

\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)

\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản

15 tháng 2 2018

1/ Đặt ƯCLN(3n - 2; 4n - 3) = d

=> \(3n-2⋮d\)và \(4n-3⋮d\)

hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)

hay \(12n-8⋮d\)và \(12n-9⋮d\)

\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Leftrightarrow12n-8-12n+9⋮d\)

\(\Leftrightarrow-8+9⋮d\)

Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)

=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau

=> phân số \(\frac{3n-2}{4n-3}\)tối giản.

17 tháng 12 2018

toán tuổi thơ 2 số 190