Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0< a< 1\Rightarrow a^2< a\)
Tương tự: \(b^2< b;c^2< c\)
=> a^2+b^2+c^2<a+b+c=2
Ta có: \(0< a< 1\)
\(\Rightarrow a-1< 0\)
\(\Rightarrow a^2-a< 0\left(1\right)\)
Tương tự ta có: \(0< b< 1\Rightarrow b^2-b=a\left(2\right)\)
Và: \(0< c< 1\Rightarrow c^2-c< 0\left(3\right)\)
Cộng: \(\left(1\right)\left(2\right)\left(3\right)\) vế theo vế ta được:
\(a^2+b^2+c^2-a-b-c< 0\)
\(\Leftrightarrow a^2+b^2+c^2< a+b+c\)
\(\Leftrightarrow a^2+b^2+c^2< 2\left(a+b+c=2\right)\)
Ta có: 0 < a < 1 ; 0 < b < 1 ; 0 < c < 1
\(\Rightarrow\hept{\begin{cases}a\left(a+1\right)< 0\\b\left(b+1\right)< 0\\c\left(c+1\right)< 0\end{cases}}\)
Cộng vế với vế. Ta được:
\(a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)< 0\)
\(a^2+a+b^2+b+c^2+c< 0\)
\(a^2+b^2+c^2< a+b+c\)
Mà a + b + c = 2
\(\Rightarrow a^2+b^2+c^2< 2\left(đpcm\right)\)
P/s: Không chắc đâu nhé :D
Cho a = 1; b =0,5; c = 0,5
1^2+0,5^2+0,5^2=1+0,25+0,25=1,5
Vì \(0\le a,b,c\le2\)nên:
\(abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow abc+2bc-abc+2ac-4c+2ab-4b-4a+8\ge0\)
\(\Leftrightarrow2bc+2ac+2ab-4\left(a+b+c\right)+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)-12+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)\ge4\)
Do đó: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\le3^2-4=5\)
(Dấu "="\(\Leftrightarrow\)(a,b,c) là các hoán vị của (0,1,2))
Theo t thì điều kiện thế này:\(-1< a,b,c< 1\)
Vì \(a+b+c=0;-1< a,b,c< 1\) nên trong các số a,b,c thì tồn tại 2 số có cùng dấu.Giả sử \(a>0;b>0;c< 0\)
\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)
Do \(a+b+c=0;-1< a,b,c< 1\) nên:\(a^2+b^2+c^2< \left|a\right|+\left|b\right|+\left|c\right|\)
\(\Rightarrow a^2+b^2+c^2< a+b-z\)
\(\Rightarrow a^2+b^2+c^2< -2z< 2\)
\(\Rightarrowđpcm\)
a2 + b2 + c2 < 2
<=> a2 + b2 + c2 < a+ b + c
<=> (a2 - a )+ (b2 - b )+ (c2 - c) < 0
<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0 (*)
Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1 vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0
tương tự b(b - 1) < 0; c(c -1) < 0
Vậy (*) => đpcm
Vì \(0\le x,y,z\le1\) nên ta có:
\(\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\Rightarrow x^2+y^2+z^2\le x+y+z=2\)
$\le $
Vì \(a\le1=>a.a\le1.a=>a^2\le a\)
\(b\le1=>b.b\le1.b=>b^2\le b\)
\(c\le1=>c.c\le1.c=>c^2\le c\)
=>\(a^2+b^2+c^2\le a+b+c\)
Vì a+b+c=2
=>\(a^2+b^2+c^2\le2\)
=>ĐPCM