Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải trên phép trên =>X=3-1=2
ta có [y-2]+1=1
=>y=2 đáp số:y=2 , x=2
Bài 3:
Giải:
Gọi số học sinh lớp 7A, 7B, 7C là a, b, c ( a,b,c\(\in\)N* )
Ta có: \(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}\) và a + b - c = 25
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}=\frac{a+b-c}{7+8-9}=\frac{24}{6}=4\)
+) \(\frac{a}{7}=4\Rightarrow a=28\)
+) \(\frac{b}{8}=4\Rightarrow b=32\)
+) \(\frac{c}{9}=4\Rightarrow c=36\)
Vậy lớp 7A có 28 học sinh
lớp 7B có 32 học sinh
lớp 7C có 36 học sinh
Bài 1:
\(\frac{3}{5}.x=\frac{2}{3}.y\Rightarrow\frac{3x}{5}=\frac{2y}{3}\Rightarrow\frac{x}{15}=\frac{y}{9}=k\)
=> \(\begin{cases}x=15k\\y=9k\end{cases}\)
ta có:
(15k)2.(9k)2=38
225k2.81k2=38
18225k4=38
k4=\(\sqrt[4]{18225}\)
x=\(15\sqrt[4]{18225}\)
y=\(9.\sqrt[4]{18225}\)
Bài 2:
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25}{9+16}=\frac{x+y-9}{25}\)
=> \(\left[\begin{array}{nghiempt}TH1:z+9=x+y-9=0\\TH2:z+9=x+y-9\ne0\end{array}\right.\)
TH1:
z+9=x+y-9=0
=> z=-9 và x+y=0=> x=-y hoặc x=y=0
+với x=y=0
2x3-1=15(1)
thay x vào (1) ta có:
2.03-1=-1 \(\ne15\)(loại)
+ với z=-9 và x=-y ta có:
2.x3-1=15
=>2.x3=16
=> x3=8
=> x3=23
=> x=2 => x=-2
=>x+y+z=-9+2-2=-9
Th2:
với z+9=x+y-9\(\ne0\)
=> z=x+y-18
x=z-y+18
thay x vào (1) ta có:
2.(z-y+18)3-1=15
2(z2-2yz+y2+54z2-108yz+54y2+972z-972y +5832)= 16
2z2-4yz+2y2+108z2-216yz+105y2+1944z -1944y +11664=16
..........................................................................................
vậy x+y+z=-9 trong TH z=-9, x=2 và y=-1
Ở bài 1 chắc mk làm sai vì lớp 7 đã học căn bậc 4 đâu. :)
ta có \(\left(x-1\right)\left(3-x\right)\le\left(\frac{x-1+3-x}{2}\right)^2=1\le\left|y-2\right|+1\)
Dấu bằng xart ra khi:
\(\hept{\begin{cases}x-1=3-x\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}\)Vậy phương trình có nghiệm duy nhất (2,2)
Bài 4
a/ \(x=\widehat{ABC};y=\widehat{ADC}\)
Ta có a//b; \(a\perp c\Rightarrow b\perp c\Rightarrow x=\widehat{ABC}=90^o\)
Xét tứ giác ABCD
\(y=\widehat{ADC}=360^o-\widehat{BAD}-\widehat{ABC}-\widehat{BCD}\) (tổng các góc trong của tứ giác = 360 độ)
\(\Rightarrow y=\widehat{ADC}=360^o-90^o-90^o-130^o=50^o\)
b/ Kéo dài n về phí B cắt AC tại D
\(\Rightarrow\widehat{CBD}=180^o-\widehat{nBC}=180^o-105^o=75^o\)
Xét tg BCD có
\(\widehat{BDC}=180^o-\widehat{CBD}-\widehat{BCD}=180^o-75^o-60^o=45^o=\widehat{mAC}\)
=> Am//Bn (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc đồng vị bằng nhau thì chúng // với nhau)
Bài 5
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Ta có \(\frac{a}{3b}=\frac{b}{3c}=\frac{a+b}{3\left(b+c\right)}=\frac{1}{3}\Rightarrow\frac{a+b}{b+c}=1\Rightarrow a+b=b+c\)
\(\frac{b}{3c}=\frac{c}{3a}=\frac{b+c}{3\left(c+a\right)}=\frac{1}{3}\Rightarrow\frac{b+c}{c+a}=1\Rightarrow b+c=c+a\)
\(\Rightarrow a+b=b+c=c+a\)
\(\frac{c}{3a}=\frac{a}{3b}=\frac{c+a}{3\left(a+b\right)}=\frac{1}{3}\Rightarrow\frac{c+a}{a+b}=1\)
Từ \(\frac{a+b}{b+c}=\frac{a}{b+c}+\frac{b}{b+c}=\frac{a}{b+c}+\frac{b}{c+a}=1\) (1)
Từ \(\frac{b+c}{c+a}=\frac{b}{c+a}+\frac{c}{c+a}=\frac{b}{c+a}+\frac{c}{a+b}=1\) (2)
Từ \(\frac{c+a}{a+b}=\frac{c}{a+b}+\frac{a}{a+b}=\frac{c}{a+b}+\frac{a}{b+c}=1\) (3)
Công 2 vế của (1) (2) và (3)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{a+b}+\frac{a}{b+c}=3\)
\(\Rightarrow2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=3.\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{3}{2}\)
\(\Rightarrow M=2018\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=\frac{2018.3}{2}=3027\)
Kẻ tia \(Bz//Ax\Rightarrow Bz//Cy\).
Vì \(Bz//Ax\)nên \(\widehat{BAx}+\widehat{ABz}=180^o\)(hai góc trong cùng phía)
\(\Leftrightarrow\widehat{ABz}=180^o-\widehat{BAx}=180^o-110^o=70^o\)
Tương tự xét \(Bz//Cy\)cũng suy ra được \(\widehat{BCz}=180^o-\widehat{BCy}=180^o-120^o=60^o\)
\(\widehat{ABC}=\widehat{ABz}+\widehat{CBz}=70^o+60^o=130^o\)