K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

GV
22 tháng 4 2017

a) \(2^{-2}=\dfrac{1}{2^2}< 1\)

b) \(\left(0,013\right)^{-1}=\dfrac{1}{0,013}>1\)

c) \(\left(\dfrac{2}{7}\right)^5=\dfrac{2^5}{7^5}< 1\)

d) \(\left(\dfrac{1}{2}\right)^{\sqrt{3}}=\dfrac{1}{2^{\sqrt{3}}}< \dfrac{1}{2^{\sqrt{1}}}=\dfrac{1}{2}< 1\)

e) vì \(0< \dfrac{\pi}{4}< 1\)

Suy ra \(\left(\dfrac{\pi}{4}\right)^{\sqrt{5}-2}=\dfrac{\left(\dfrac{\pi}{4}\right)^{\sqrt{5}}}{\left(\dfrac{\pi}{2}\right)^2}>\dfrac{\left(\dfrac{\pi}{4}\right)^{\sqrt{4}}}{\left(\dfrac{\pi}{4}\right)^2}=1\)

f) Vì \(0< \dfrac{1}{3}< 1\)

Nên \(\left(\dfrac{1}{3}\right)^{\sqrt{8}-3}>\left(\dfrac{1}{3}\right)^{\sqrt{9}-3}=\left(\dfrac{1}{3}\right)^0=1\)

GV
22 tháng 4 2017

a) \(\left(\sqrt{17}\right)^6=\sqrt{\left(17^3\right)^2}=17^3=4913\)

\(\left(\sqrt[3]{28}\right)^6=\sqrt[3]{\left(28^2\right)^3}=28^2=784\)

=> \(\left(\sqrt{17}\right)^6>\left(\sqrt[3]{28}\right)^6\)

=> \(\sqrt{17}>\sqrt[3]{28}\)

GV
22 tháng 4 2017

b) \(\left(\sqrt[4]{13}\right)^{20}=13^5=371293\)

\(\left(\sqrt[5]{23}\right)^{20}=23^4=279841\)

=> \(\sqrt[4]{13}>\sqrt[5]{23}\)

1 tháng 4 2017

a) \(\left(3,1\right)^{7,2}\)\(\left(4,3\right)^{7,2}\)

Thấy 7,2 = 7,2 (số mũ)

Mà: \(3,1< 4,3\) (cơ số)

Vậy: \(\left(3,1\right)^{7,2}< \left(4,3\right)^{7,2}\)

b) \(\left(\dfrac{10}{11}\right)^{2,3}\)\(\left(\dfrac{12}{11}\right)^{2,3}\)

Thấy 2,3 = 2,3 (số mũ)

Mà: \(\dfrac{10}{11}< \dfrac{12}{11}\)

Vậy: \(\left(\dfrac{10}{11}\right)^{2,3}\)\(< \) \(\left(\dfrac{12}{11}\right)^{2,3}\)

c) \(\left(0,3\right)^{0,3}\)\(\left(0,2\right)^{0,3}\)

Thấy 0,3 = 0,3 (số mũ)

Mà: 0,3 > 0,2 (cơ số)

Vậy: \(\left(0,3\right)^{0,3}>\left(0,2\right)^{0,3}\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2017

Lời giải:

Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)

\(\Rightarrow 13^t=3^t+4^t+12^t\)

\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)

Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)

Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)

Đáp án B

20 tháng 10 2017

cho em hỏi tại sao lại có 3^t +4^t +12^t=13^t. Với lại em không hiểu chỗ tại sao hàm số nghịch biến. Và tại sao từ \(\log_{abc}144=\log144_{144^t}=\dfrac{1}{t}\)

26 tháng 3 2016

a) \(\sqrt[3]{10}=\sqrt[15]{10^5}>\sqrt[15]{20^3=\sqrt[5]{20}}\)

b) Vì \(\frac{1}{e}<1\) và \(\sqrt{8}-3<0\) nên \(\left(\frac{1}{e}\right)^{\sqrt{8}-3}>1\)

c) Vì \(\frac{1}{8}<1\) và \(\pi>3.14\) nên \(\left(\frac{1}{8}\right)^{\pi}<\left(\frac{1}{8}\right)^{3,14}\)

d)  Vì \(\frac{1}{\pi}<1\)  và \(1,4<\sqrt{2}\)  nên \(\left(\frac{1}{\pi}\right)^{1,4}>\pi^{-\sqrt{2}}\)

 
GV
26 tháng 4 2017

a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)

\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)

\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)

\(=2^3+30-\dfrac{3}{2}\)

\(=36,5\)

GV
26 tháng 4 2017

b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)

\(=0,1^{-1}-2^2-2^{-4}\)

\(=10-4-\dfrac{1}{16}\)

\(=\dfrac{95}{16}\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số