K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2022

\(\dfrac{2020x2018+9}{2019x2020-2011}=\dfrac{2020x\left(2019-1\right)+9}{2020x2019-2011}=\dfrac{2020x2019-2020+9}{2020x2019-2011}=\dfrac{2020x2019-2011}{2020x2019-2011}=1\)\(\left(1+\dfrac{1}{2}\right)x\left(1+\dfrac{1}{3}\right)x\left(1+\dfrac{1}{4}\right)x...x\left(1+\dfrac{1}{2020}\right)\\ =\dfrac{3}{2}x\dfrac{4}{3}x\dfrac{5}{4}x...x\dfrac{2021}{2020}=\dfrac{2021}{2}\)

27 tháng 6 2018

a) (x+1/7):1/3=3/4
=> x+1/7=3/4.1/3
=> x+1/7=1/4
=> x=1/4-1/7
=> x=3/28

b)(1/4+x) :5/7=4/9
(1/4+x) =4/9.5/7
(1/4+x)=20/63
x=20/63-1/4
x=17/252
 các phần còn lại cậu tự làm nha giống nhau mà

18 tháng 2 2021

Câu trả lời của bạn Thủy Thủ Mặt Trăng là đúng hay sai ạ
mn cho mik bt vs
mik cũng đang ko bt bài này

12 tháng 10 2020

\(A=\frac{1}{\left(2\times2\right)}+\frac{1}{\left(3\times3\right)}+....+\frac{1}{\left(2011\times2011\right)}\)

\(A=1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+.....+\frac{1}{2011}-\frac{1}{2011}\)

\(A=1+\frac{1}{2}\)

\(A=\frac{3}{2}\)

\(A>\frac{3}{4}\)

4 tháng 9 2019

các bn ơi mk cần gấp lắm

bạn ở đâu vậy

11 tháng 9 2019

Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)

=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)

=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)

=> x = 9

Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)

=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)

=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)

=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)

=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)

=> \(\frac{15}{16}:x=\frac{11}{12}\)

=> \(x=\frac{45}{44}\)

Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)

=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)

=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)

=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)

=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)

=> \(\frac{1}{x+1}=\frac{1}{800}\)

=> x = 799

11 tháng 9 2019

Bài 2 :

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)

Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)

Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)

\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)

\(=1-\frac{1}{12}=\frac{11}{12}\) (2)

Thay (1) và (2) vào biểu thức (*) ta được :

\(\frac{15}{16}:x=\frac{11}{12}\)

\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)

\(\Leftrightarrow x=\frac{45}{44}\)

Vậy : \(x=\frac{45}{44}\)

4 tháng 7 2020

B= (1-1/2). ( 1-1/3).(1-1/4).(1-1/5)....(1-1/2004)

B= 1/2. 2/3 . 3/4. 4/5....2003/2004

B= 1/2004

4 tháng 7 2020

\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)

\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)

\(B=\frac{1}{2004}\)

4 tháng 7 2020

\(B=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\cdot....\cdot\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)

\(=\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot....\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)

\(=\frac{2\cdot3\cdot4\cdot...\cdot2002\cdot2003}{3\cdot4\cdot5\cdot...\cdot2003\cdot2004}=\frac{1}{1002}\)

31 tháng 7 2020

\(\frac{2x-4,36}{0,125}=0,25.42,9-11,7.0,25+0,25.0,8\)

\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.\left(42,9-11.7+0,8\right)\)

\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.32\)

\(\Leftrightarrow\frac{2x-4,36}{0,125}=8\)

\(\Leftrightarrow2x-4,36=1\)

\(\Leftrightarrow2x=5,36\)

\(\Leftrightarrow x=2,68\)

b) \(N=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2005.2010}\)

\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)

\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{2010}\right)\)

\(\Leftrightarrow N=\frac{1}{5}.\frac{2009}{2010}=\frac{2009}{10050}\)

Bài 1:

a)\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot42,9-11,7\cdot0,25+0,25\cdot0,8\)

\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot\left(42,9-11,7+0,8\right)\)

\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot32\)

\(\frac{2\cdot x-4,36}{0,125}=8\)

\(2\cdot x-4,36=8\cdot0,125\)

\(2\cdot x-4,36=1\)

\(2\cdot x=1+4,36\)

\(2\cdot x=5,36\)

\(x=\frac{5,36}{2}=2,68\)

b) \(N=\frac{1}{1\cdot5}+\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+\frac{1}{15\cdot20}+...+\frac{1}{2005\cdot2010}\)

\(4N=\frac{4}{1\cdot5}+\frac{4}{5\cdot10}+\frac{4}{10\cdot15}+\frac{4}{15\cdot20}+...+\frac{4}{2005\cdot2010}\)

\(4N=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\)

\(4N=1-\frac{1}{2010}=\frac{2009}{2010}\)

\(N=\frac{2009}{2010}\div4=\frac{2009}{8040}\)

Bài 2:

a) ( x + 5,2 ) : 3,2 = 4,7 ( dư 0,5 )

\(x+5,2=4,7\cdot3,2+0,5\)

\(x+5,2=15,54\)

\(x=15,54-5,2=10,34\)

b)\(A=\frac{4047991-2010\cdot2009}{4050000-2011\cdot2009}\)

\(A=\frac{4047991-2010\cdot2009}{4050000-2009-2010\cdot2009}\)

\(A=\frac{4047991-2010\cdot2009}{4047991-2010\cdot2009}=1\)

Bài 3:

a) \(104,5\cdot x-14,1\cdot x+9,6\cdot x=25\)

\(x\cdot\left(104,5-14,1+9,6\right)=25\)

\(x\cdot100=25\)

\(x=\frac{25}{100}=\frac{1}{4}=0,25\)

b) \(T=\frac{2009\cdot2010+2000}{2011\cdot2010-2020}\)

\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+4020-2020}\)

\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+2000}=1\)

23 tháng 8 2019

Giup minh voi , ban nao ma nhanh tay minh se cho 3

29 tháng 5 2019

\(\left(x\cdot2,4-4,2\right)\div x=1\)

\(\Rightarrow x\cdot2,4-4,2=x\)

\(\Rightarrow x\cdot2,4=x+4,2\)

\(\Rightarrow\frac{12x}{5}=\frac{5x+21}{5}\)

\(\Rightarrow12x=5x+21\)

\(\Rightarrow12x-5x=21\)

\(\Rightarrow7x=21\Rightarrow x=\frac{21}{7}=3\)

Vậy x = 3 

29 tháng 5 2019

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{x\left(x+2\right)}\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{x+2}\right)\)

\(=\frac{1}{2}\cdot\frac{x+1}{x+2}\)

\(=\frac{x+1}{2x+2}\)