\(\dfrac{1}{1+2+3+4}+\dfrac{1}{2+3+4+5}+...+\dfrac{1}{n+\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

Đây là tính hợp lí ... mà câu a là 27,5 chứ không phải 2,75...

\(A=\dfrac{7,5-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{27,5-2,2+\dfrac{11}{7}+\dfrac{11}{3}}=\dfrac{\dfrac{15}{2}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}}{\dfrac{55}{2}-\dfrac{11}{5}+\dfrac{11}{7}+\dfrac{11}{3}}\\ =\dfrac{3\left(\dfrac{5}{2}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{5}{2}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)

b: \(=26:\left[\dfrac{3:0.1}{2.5\cdot2}+\dfrac{0.25\cdot4}{2}\right]+\dfrac{2}{3}\cdot\dfrac{21}{4}\)

\(=26:\left[\dfrac{30}{5}+1\right]+\dfrac{42}{12}\)

\(=\dfrac{26}{7}+\dfrac{42}{12}=\dfrac{101}{14}\)

c: \(=\left[\dfrac{4-3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{25}{4002}\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)

\(=\dfrac{\left(\dfrac{1}{34}+\dfrac{33}{34}\right)}{\dfrac{1}{2}+\dfrac{9}{2}}=1:5=\dfrac{1}{5}\)

9 tháng 12 2017

Click để xem thêm, còn nhiều lắm!

6 tháng 12 2017

B = .................

Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0

\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)

\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)

\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)

6 tháng 12 2017

Mình làm câu 1,2 trước, câu 3 sau

Câu 1:

\(\sqrt{x^2}=0\)

=> \(\left(\sqrt{x^2}\right)^2=0^2\)

\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Câu 2:

\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)

\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)

\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)

\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)

26 tháng 9 2017

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)

Cái B TT nhé

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)

D TT

E mk thấy nó ss ớ

26 tháng 9 2017

ai thế

11 tháng 10 2017

e) 3-1.3n+6.3n-1=7.36

<=>3n-1+6.3n-1=7.36

<=>3n-1.7=7.36

=>3n-1=36=>n-1=6=>n=7

11 tháng 10 2017

\(3^4< \dfrac{1}{9}.27^n< 3^{10}< =>3^6.\dfrac{1}{9}< 3^{3n}.\dfrac{1}{9}< 3^{12}.\dfrac{1}{9}\)

\(< =>3^6< 3^{3n}< 3^{12}=>6< 3n< 12\)

\(< =>2< n< 4=>n=3\)

16 tháng 10 2017

\(\dfrac{\left(\dfrac{-1}{2}\right)^3-\left(\dfrac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\dfrac{3}{4}\right)^2-\dfrac{3}{8}}\)

\(=\dfrac{\dfrac{-1}{8}-\dfrac{27}{64}.4}{-2+\dfrac{9}{16}-\dfrac{3}{8}}=\dfrac{-\dfrac{1}{8}-\dfrac{27}{16}}{-\dfrac{29}{16}}\)

\(=\dfrac{-\dfrac{29}{16}}{-\dfrac{29}{16}}=1\)

Chúc bạn học tốt!!!

16 tháng 9 2017

cái này mà bạn ko biết làm á, bấm máy tính tạch tạch mấy phát là ra mà

17 tháng 9 2017

lười làm nên nhờ mấy bạn giải dùm

7 tháng 1 2018

1.

\(\left(\dfrac{-2}{3}\right).0,75+1\dfrac{2}{3}:\left(\dfrac{-4}{9}\right)+\left(\dfrac{-1}{2}\right)^2\)

\(=\left(\dfrac{-2}{3}\right).\dfrac{3}{4}+\dfrac{5}{3}.\left(\dfrac{9}{-4}\right)+\dfrac{1}{4}\)

\(=-\dfrac{1}{2}+\dfrac{45}{-12}+\dfrac{1}{4}\)

\(=-\dfrac{6}{12}+\dfrac{-45}{12}+\dfrac{3}{4}\)

\(=\dfrac{-48}{12}\)

\(=-4\)

2.

a) \(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{3}{4}-\dfrac{4}{5}\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{-1}{20}\)

\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{10}{20}\)

\(\Leftrightarrow x=\dfrac{-11}{20}\)

b) \(\left|x-\dfrac{2}{5}\right|+\dfrac{3}{4}=\dfrac{11}{4}\)

\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=\dfrac{11}{4}-\dfrac{3}{4}\)

\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=-2\Rightarrow x=-2+\dfrac{2}{5}=\dfrac{-8}{5}\\x-\dfrac{2}{5}=2\Rightarrow x=2+\dfrac{2}{5}=\dfrac{12}{5}\end{matrix}\right.\)

3.

a) \(\dfrac{16}{2^n}=2\)

\(\Leftrightarrow2^n=16:2\)

\(\Leftrightarrow2^n=8\)

\(\Leftrightarrow2^n=2^3\)

\(\Leftrightarrow n=3\)

b) \(\dfrac{\left(-3\right)^n}{81}=-27\)

\(\Leftrightarrow\left(-3\right)^n=\left(-27\right).81\)

\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^3.\left(-3\right)^4\)

\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^7\)

\(\Leftrightarrow n=7\)

4. Ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)

\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)

Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

\(x-y+x=-49\) ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)

Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)

a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)

\(\Rightarrow2^n\cdot4,5=288\)

\(\Rightarrow2^n=64\)

\(\Rightarrow n=6\)

b) \(2^m-2^n=1984\)

\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)

\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)

\(\Rightarrow n=6\)

\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)