Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm nốt câu còn lại ok
b) ta thấy x = 0 không là nghiệm của phương trình
chia cả 2 vế cho x khác 0, ta được :
\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)
đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)
Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)
Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)
Vậy ...
a) Từ phương trình đã cho ta có: \(x\ge0\)
Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0
Nhân với liên hợp của vế trái ta được:
\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)
Kết hợp với phương trình đã cho ta có:
\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)
Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)
1. \(\sqrt{x^2+2x+3}=\sqrt{\left(x+1\right)^2+2}>0\)
=> Biểu thức luôn luôn có nghĩa với mọi x
2. \(\sqrt{x^2-2x+2}=\sqrt{\left(x-1\right)^2+1}>0\)
=> Biểu thức luôn luôn có nghĩa với mọi x
3. \(\sqrt{x^2+2x-3}=\sqrt{\left(x+1\right)^2-4}\)
\(\Rightarrow DK:\left(x+1\right)^2\ge4\)
4. \(\sqrt{2x^2+5x+3}=\sqrt{\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2-\frac{1}{8}}\)
\(\Rightarrow DK:\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2\ge\frac{1}{8}\)
K biết đúng k.. Sai thôi
1) tc : x2 + 2x +3 = x2 + 2x + 1 + 2 = (x+1)2 +2 > 0 vs mọi x
=> căn thức có nghĩa vs mọi x
2) tương tự câu 1: x2 - 2x + 2 = (x-1)2 +1 > 0 vs mọi x
=> căn thức có nghĩa vs mọi x
3) \(\sqrt{x^2+2x-3}\)có nghĩa <=> x2+2x-3\(\ge0\)
<=> (x+1)2 - 4 \(\ge0\)
<=> (x+1)2 \(\ge4\)
<=> x+1 \(\ge2\)
<=> x \(\ge1\)
4) \(\sqrt{2x^2+5x+3}\)có nghĩa <=> 2x2 +5x +3 \(\ge0\)
<=> 2x2 + 2x + 3x + 3 \(\ge0\)
<=> (2x+3)(x+1) \(\ge0\)
<=>\(\hept{\begin{cases}2x+3\ge0\\x+1\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}2x+3\le0\\x+1\le0\end{cases}}\)
<=> \(\hept{\begin{cases}x\ge\frac{-3}{2}\\x\ge-1\end{cases}}\) hoặc \(\hept{\begin{cases}x\le\frac{-3}{2}\\x\le-1\end{cases}}\)
<=> \(\frac{-3}{2}\le x\le-1\)
\(x^2+2x+4=3\sqrt{x^3+4x}\)đk \(x\ge0\)
\(x^2+2x+4=3\sqrt{x\left(x^2+4\right)}\)
đặt \(x^2+4=t\)
=> \(t+2x=3\sqrt{tx}\Leftrightarrow t^2-5tx+4x^2=0\)
\(\Leftrightarrow\left(t-x\right)\left(t-4x\right)=0\Leftrightarrow\orbr{\begin{cases}t=x\\t=4x\end{cases}}\)
nếu t=x phương trình trở thành \(x^2+4=x\Leftrightarrow x^2-x+4=0\Rightarrow ptvonghiem\)
nếu t=4x phương trinh trở thành \(x^2+4=4x\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
vậy x=2 là nghiệm của pt
\(\sqrt{2x+1}-\sqrt{5-x}+x-6=0\)
\(\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(1-\sqrt{5-x}\right)+x-4=0\)
\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{5-x}+1}+x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{5-x}+1}+1\right)=0\)
\(\Leftrightarrow x=4\)
cứ bình phương 2 vế lên xong chuyển vế rồi bình phương lần nữa