\(\sqrt{x+3}+\sqrt{2x+1}=3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

cứ bình phương 2 vế lên xong chuyển vế rồi bình phương lần nữa

2 tháng 3 2020

mình làm nốt câu còn lại ok

b) ta thấy x = 0 không là nghiệm của phương trình

chia cả 2 vế cho x khác 0, ta được :

\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)

đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)

Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)

Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)

Vậy ...

2 tháng 3 2020

a) Từ phương trình đã cho ta có: \(x\ge0\)

Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0

Nhân với liên hợp của vế trái ta được:

\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)

Kết hợp với phương trình đã cho ta có:

\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)

Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)

27 tháng 5 2017

bạn chỉ cần cố gắng là làm được

3 tháng 9 2016

1. \(\sqrt{x^2+2x+3}=\sqrt{\left(x+1\right)^2+2}>0\)

=> Biểu thức luôn luôn có nghĩa với mọi x

2. \(\sqrt{x^2-2x+2}=\sqrt{\left(x-1\right)^2+1}>0\)

=> Biểu thức luôn luôn có nghĩa với mọi x

3. \(\sqrt{x^2+2x-3}=\sqrt{\left(x+1\right)^2-4}\)

\(\Rightarrow DK:\left(x+1\right)^2\ge4\)

4. \(\sqrt{2x^2+5x+3}=\sqrt{\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2-\frac{1}{8}}\)

 \(\Rightarrow DK:\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2\ge\frac{1}{8}\)

K biết đúng k.. Sai thôi

3 tháng 9 2016

1)    tc :     x+ 2x +3  =   x2 + 2x + 1 + 2   =   (x+1)2 +2 > 0 vs mọi x

     => căn thức có nghĩa vs mọi x

2)    tương tự câu 1:   x2 - 2x + 2  =  (x-1)2 +1   >    0   vs mọi x

        => căn thức có nghĩa vs mọi x

3)    \(\sqrt{x^2+2x-3}\)có nghĩa    <=>  x2+2x-3\(\ge0\)

                                                          <=> (x+1)2 - 4 \(\ge0\)

                                                        <=> (x+1)2 \(\ge4\)

                                                         <=> x+1 \(\ge2\)

                                                         <=> x \(\ge1\)

4) \(\sqrt{2x^2+5x+3}\)có nghĩa   <=>  2x2 +5x +3 \(\ge0\)

                                                      <=> 2x2 + 2x + 3x + 3 \(\ge0\)

                                                      <=> (2x+3)(x+1) \(\ge0\)

                                                       <=>\(\hept{\begin{cases}2x+3\ge0\\x+1\ge0\end{cases}}\)  hoặc    \(\hept{\begin{cases}2x+3\le0\\x+1\le0\end{cases}}\)

                                                     <=>  \(\hept{\begin{cases}x\ge\frac{-3}{2}\\x\ge-1\end{cases}}\)        hoặc   \(\hept{\begin{cases}x\le\frac{-3}{2}\\x\le-1\end{cases}}\)

                                                    <=>   \(\frac{-3}{2}\le x\le-1\)

10 tháng 10 2019

♥☻Help♥Me☻♥

24 tháng 8 2017

bài đầu tiên bằng -3

bài thứ hai mình ko biết

25 tháng 8 2017

Dễ =))

16 tháng 2 2017

\(x^2+2x+4=3\sqrt{x^3+4x}\)đk \(x\ge0\)

\(x^2+2x+4=3\sqrt{x\left(x^2+4\right)}\)

đặt \(x^2+4=t\)

=> \(t+2x=3\sqrt{tx}\Leftrightarrow t^2-5tx+4x^2=0\)

\(\Leftrightarrow\left(t-x\right)\left(t-4x\right)=0\Leftrightarrow\orbr{\begin{cases}t=x\\t=4x\end{cases}}\)

nếu t=x phương trình trở thành \(x^2+4=x\Leftrightarrow x^2-x+4=0\Rightarrow ptvonghiem\)

nếu t=4x phương trinh trở thành \(x^2+4=4x\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

vậy x=2 là nghiệm của pt 

15 tháng 2 2017

x=2

nhớ k cho nha

4 tháng 4 2019

\(\sqrt{2x+1}-\sqrt{5-x}+x-6=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(1-\sqrt{5-x}\right)+x-4=0\)

\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{5-x}+1}+x-4=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{5-x}+1}+1\right)=0\)

\(\Leftrightarrow x=4\)