Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) sai đề rồi bn
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\)(tính chất dãy tỉ số bằng nhau) (1)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3-b^3}{c^3-d^3}\)(2)
từ (1) và (2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\left(đpcm\right)\)
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2007.\frac{1}{90}\)
\(\Leftrightarrow\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{223}{10}\)
\(\Leftrightarrow\)\(1+\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}=\frac{223}{10}\)
\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{193}{10}\)
Vậy \(S=\frac{193}{10}\)
Chúc bạn học tốt ~
Cách 1: Nhân cả hai vế của đẳng thức cho \(a+b+c\)ta được:
\(\frac{a+b+c}{a+b}=\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{90}\)
\(\Rightarrow a+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{a+c}=\frac{2007}{90}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2007}{90}-3=22,3-3=19,3\)
MK SẼ CHO 3 K CHO BẠN NÀO NHANH+ĐÚNG NHẤT.
NHANH GIUP MK CAI COI
a) ta có: \(\frac{2,5}{5,5}=\frac{5}{11};4:12=\frac{4}{12}=\frac{1}{3}\)
\(\Rightarrow\frac{1}{3}=\frac{4}{12}\Rightarrow\frac{1}{4}=\frac{3}{12};\frac{4}{1}=\frac{12}{3};\frac{3}{1}=\frac{12}{4}\)
phần b bn dựa vào mak lm nha
a) đặt a/b = c/d = k suy ra a = bk ; c = dk
a/a - b = bk/bk - b = k/k - 1 (1)
c/c - d = dk/dk - d = k/k - 1 (2)
từ (1)(2) suy ra a/a - b = c/c - d
b,c tương tự đặt k còn lại bạn tự lm nha!!!
a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (dãy tỉ số bằng nhau)
Ta có: \(\frac{a}{c}=\frac{a-b}{c-d}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (đpcm) (tính chất tỉ lệ thức)
b)Bạn tham khảo bài mình làm tại đây nhé!
c) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\) (1) .Mặt khác,theo t/c dãy tỉ số bằng nhau: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\) (2)
Từ (1) và (2),suy ra đpcm: \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
áp dụng t/c DTSBN,ta có:
\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}=\frac{ab+ac-bc-ab+ca+bc}{2-3+4}=\frac{2ac}{3}\)
\(\frac{ab+ac}{2}=\frac{2ac}{3}\Leftrightarrow3ab+3ac=4ac\Leftrightarrow3ab=ac\Leftrightarrow3b=c\Leftrightarrow\frac{b}{1}=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\)(vì a khác 0)(!)
\(\frac{ca+cb}{4}=\frac{2ac}{3}\Leftrightarrow3ac+3cb=8ac\Leftrightarrow3bc=5ac\Rightarrow3b=5a\Rightarrow\frac{a}{3}=\frac{b}{5}\)(vì c khác 0)(@)
từ (!) và (@) => đpcm