Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4
a/ \(x=\widehat{ABC};y=\widehat{ADC}\)
Ta có a//b; \(a\perp c\Rightarrow b\perp c\Rightarrow x=\widehat{ABC}=90^o\)
Xét tứ giác ABCD
\(y=\widehat{ADC}=360^o-\widehat{BAD}-\widehat{ABC}-\widehat{BCD}\) (tổng các góc trong của tứ giác = 360 độ)
\(\Rightarrow y=\widehat{ADC}=360^o-90^o-90^o-130^o=50^o\)
b/ Kéo dài n về phí B cắt AC tại D
\(\Rightarrow\widehat{CBD}=180^o-\widehat{nBC}=180^o-105^o=75^o\)
Xét tg BCD có
\(\widehat{BDC}=180^o-\widehat{CBD}-\widehat{BCD}=180^o-75^o-60^o=45^o=\widehat{mAC}\)
=> Am//Bn (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc đồng vị bằng nhau thì chúng // với nhau)
Bài 5
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Ta có \(\frac{a}{3b}=\frac{b}{3c}=\frac{a+b}{3\left(b+c\right)}=\frac{1}{3}\Rightarrow\frac{a+b}{b+c}=1\Rightarrow a+b=b+c\)
\(\frac{b}{3c}=\frac{c}{3a}=\frac{b+c}{3\left(c+a\right)}=\frac{1}{3}\Rightarrow\frac{b+c}{c+a}=1\Rightarrow b+c=c+a\)
\(\Rightarrow a+b=b+c=c+a\)
\(\frac{c}{3a}=\frac{a}{3b}=\frac{c+a}{3\left(a+b\right)}=\frac{1}{3}\Rightarrow\frac{c+a}{a+b}=1\)
Từ \(\frac{a+b}{b+c}=\frac{a}{b+c}+\frac{b}{b+c}=\frac{a}{b+c}+\frac{b}{c+a}=1\) (1)
Từ \(\frac{b+c}{c+a}=\frac{b}{c+a}+\frac{c}{c+a}=\frac{b}{c+a}+\frac{c}{a+b}=1\) (2)
Từ \(\frac{c+a}{a+b}=\frac{c}{a+b}+\frac{a}{a+b}=\frac{c}{a+b}+\frac{a}{b+c}=1\) (3)
Công 2 vế của (1) (2) và (3)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{a+b}+\frac{a}{b+c}=3\)
\(\Rightarrow2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=3.\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{3}{2}\)
\(\Rightarrow M=2018\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=\frac{2018.3}{2}=3027\)
\(B=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)......\left(\frac{1}{100^2}-1\right).\)
\(B=\frac{-3}{2^2}\times\frac{-8}{3^2}\times\frac{-15}{4^2}\times.....\times\frac{-9999}{100^2}\)
\(B=-\left(\frac{3}{2^2}\times\frac{8}{3^2}\times.....\times\frac{9999}{100^2}\right)\)(vì A là tích của 99 thừa số âm nên kết quả là âm )
\(B=-\left(\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times.....\times\frac{99.101}{100.100}\right)\)
\(B=-\left(\frac{1.2.3...99}{2.3.4.....100}\times\frac{3.4.5....101}{2.3.4....100}\right)\)
\(B=-\left(\frac{1}{100}\times\frac{101}{2}\right)\)
\(B=-\frac{101}{200}\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AB=AC
hay ΔABC cân tại A
b: XétΔABC có
AD là đường cao
CH là đường cao
AD cắt CH tại D
Do đó: D là trực tâm của ΔABC
=>BD vuông góc với AC
Giải:
Gọi số tiền thưởng của người thứ 1, 2, 3 là a, b, c
Ta có: \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\) và a + b = 7,2 ( triệu đồng)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b}{3+5}=\dfrac{7,2}{8}=0,9\)
\(\Rightarrow\left\{{}\begin{matrix}a=2,7\\b=4,5\\c=6,3\end{matrix}\right.\)
Vậy người 1 có số tiền thưởng là 2,7 triệu đồng
người 2 có số tiền thưởng là 4,5 triệu đồng
người thứ 3 có số tiền thưởng là 6,3 triệu đồng
Gọi số tiền thưởngcủa ba công nhân 1, 2, 3 lần lượt là a, b, c.
Theo đề bài, ta có : \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\)và a + b = 7,2 (triệu đồng)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b}{3+5}=\dfrac{7,2}{8}=0,9\)
Từ \(\dfrac{a}{3}=0,9\Rightarrow a=0,9\times3=2,7\)
\(\dfrac{b}{5}=0,9\Rightarrow b=0,9\times5=4,5\)
\(\dfrac{c}{7}=0,9\Rightarrow c=0,9\times7=6,3\)
Vậy số tiền được thưởng của người thứ nhất là 2,7 triệu đồng, số tiền được thưởng của người thứ hai là 4,5 triệu đồng, số tiền được thưởng của người thứ ba là 6,3 triệu đồng.
Tổng số tiền được thưởng của cả ba người là : 2,7 + 4,5 + 6, 3 = 13,5 triệu đồng.
2.
a) +) ta co: tam giác GLO
GL = 6, LO = 8, OG = 10
=> GL < LO < GO ( 6<8<10)
=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )
+) ta co: tam giac UVW
góc V = 40, góc U = 50
=> góc W = 180 - ( góc V + goc Ư )
= 180 - ( 50 + 40)
= 90
=> góc V < góc U < góc W
=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )
a, Xét tam giá GHK và tam giác KIG có
GH = IK ( gt)
góc HGK = góc GKI(gt)
GK chung
=> tam giác GHK = tam giác KIG ( c-g-c)
=> GI = HK
=> góc IGK = góc KHG
Ta có góc IGK = góc KHG
=> GI //HK