K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016

bạn chụp dọc đc hem, òi mắt mất

7 tháng 7 2017

\(a,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)

\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)

\(\Leftrightarrow12x=36\)

\(\Rightarrow x=3\)

b) \(16x^2-\left(4x-5\right)^2=15\)

\(\Rightarrow16x^2-16x^2+40x-25=15\)

\(\Rightarrow x=1\)

d) \(\left(2x+5\right)\left(8x-7\right)-\left(-4x-3\right)^2=16\)

\(\Leftrightarrow16x^2-14x+40x-35-16x^2+24x-9=16\)

\(\Leftrightarrow50x=60\)

\(\Rightarrow x=\dfrac{6}{5}\)

e) \(49x^2+12x+1=0\)

\(\Leftrightarrow7x+1=0\)

\(\Rightarrow x=\dfrac{-1}{7}\)

f) \(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2-2x+1+y^2+4x+5=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

25 tháng 10 2017

Giup cai j ? Cau nao ?

25 tháng 10 2017

Đề số 3.

1.

a,\(4x\left(5x^2-2x+3\right)\)

\(=20x^3-8x^2+12x\)

b.\(\left(x-2\right)\left(x^2-3x+5\right)\)

\(=x^3-3x^2+5x-2x^2+6x-10\)

\(=x^3-5x^2+11x-10\)

c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)

\(=2x^2-x+\dfrac{3}{5}\)

d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)

\(=\left(x-6y\right)^2:\left(x-6y\right)\)

\(=x-6y\)

2.

a,\(x^2+5x+5xy+25y\)

\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)

\(=x\left(x+5\right)+5y\left(x+5\right)\)

\(=\left(x+5y\right)\left(x+5\right)\)

b,\(x^2-y^2+14x+49\)

\(=\left(x^2+14x+49\right)-y^2\)

\(=\left(x+7\right)^2-y^2\)

\(=\left(x+7-y\right)\left(x+7+y\right)\)

c,\(x^2-24x-25\)

\(=x^2+25x-x-25\)

\(=\left(x^2-x\right)+\left(25x-25\right)\)

\(=x\left(x-1\right)+25\left(x-1\right)\)

\(=\left(x+25\right)\left(x-1\right)\)

3.

a,\(5x\left(x-3\right)-x+3=0\)

\(5x\left(x-3\right)-\left(x-3\right)=0\)

\(\left(5x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)

b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)

\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)

\(3x^2-15x-2x-3x^2+2+3x=30\)

\(-14x+2=30\)

\(-14x=28\)

\(x=-2\)

c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)

\(x^2+5x+6-x^2-5x+2x+10=0\)

\(2x+16=0\)

\(2x=-16\)

\(x=-8\)

Mình học chật hình không giúp bạn được.Xin lỗi!

5 tháng 12 2016

1)60

1)4

Chac chan dung

9 tháng 8 2016

mí pạn xem thì xem ,ko xem thì thui ko cần phải cmt tào lao như zậy đâu

pạn í thik thì pạn í có quyền thik selfie thì pạn í làm mắc mớ j mí pạn ns là tâm thần.......

ko thik thì tik đi ko cận chê bai zậy đâu

   xl mik thẳng tính lém

9 tháng 8 2016

hihi  xinh đó ........hihi

30 tháng 4 2017

đề 1 bài 4

xét tam gics ABC và tam giác HBA có

góc B chung

góc BAC = góc BHA (=90 độ)

=> tam giác ABC đồng dạng vs tam giác HBA (g.g)

=> AB/HB=BC/AB=> AB^2=HB *BC

áp dụng đl py ta go trog tam giác vuông ABC có

BC^2 = AB^2 +AC^2=6^2+8^2=100

=> BC =\(\sqrt{100}\)=10 cm

ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )

=> AC/AH=BC/BA=>AH=8*6/10=4.8CM

=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm

=>HC =BC-BH=10-3,6=6,4cm

30 tháng 4 2017

dề 1 bài 1

5x+12=3x -14

<=>5x-3x=-14-12

<=>2x=-26

<=> x=-12

vạy S={-12}

(4x-2)*(3x+4)=0

<=>4x-2=0<=>x=1/2

<=>3x+4=0<=>x=-4/3

vậy S={1/2;-4/3}

đkxđ : x\(\ne2;x\ne-3\)

\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)

<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)

=> 4x+12+x-2=0

<=>5x=-10

<=>x=-2 (nhận)

vậy S={-2}

8 tháng 6 2017

b)\(B=1^2-2^2+3^2-4^2+...-2016^2+2017^2\)

\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(2015^2-2016^2\right)+2017^2\)

\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2015-2016\right)\left(2015+2016\right)+2017^2\)

\(=-1\cdot\left(1+2\right)+\left(-1\right)\cdot\left(3+4\right)+...+\left(-1\right)\cdot\left(2015+2016\right)+2017^2\)

\(=-1\cdot\left(1+2+...+2015+2016\right)+2017^2\)

\(=-1\cdot\dfrac{2016\cdot\left(2016+1\right)}{2}+2017^2\)

\(=-2033136+4068289=2035153\)

c)\(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(=2^{64}-1-2^{64}=-1\)

26 tháng 10 2017

pn đăng lại ik, chứ nhìn kiểu này soái cổ chết

26 tháng 10 2017

Câu 6: Tìm giá trị nhỏ nhất của biểu thức : \(A=x^2-2x+2\)

\(A=x^2-2x+2\)

\(A=\left(x^2-2.x.1+1^2\right)+2\)

\(A=\left(x-1\right)^2+2\)

Nhận xét : \(\left(x-1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-1\right)^2+2\ge2\) với mọi x

\(\Rightarrow A\ge2\)

Vậy biểu thức A bằng 2 đạt được khi :

\(\left(x-1\right)^2=0\)

\(x-1=0\)

\(x=1\)

1 tháng 4 2017

Dễ quá bỏ qua

1 tháng 4 2017

âncsi hình sau mình nhìn muốn gãyy cổ rồi :v