\(\Delta\)\(ABC\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

Bạn tự vẽ hình.

a, Ta có: \(ABC+\widehat{ACB}=90^o\Leftrightarrow\widehat{ACB}=60^o\)

Dễ dàng chứng minh \(\Delta BCD\) cân tại B

=> \(\Delta BCD\) đều

b, \(\Delta BCD\) => \(BD=DC=BC\)

AB là đường trung tuyến => \(AB=\frac{1}{2}DC\)

=> \(AB=\frac{1}{2}BC\)

B A E C 30 o

Bài làm

a) Vì BA là đường cao của tam giác BCE (BA  |  EC)

Mà BE là đường trung tuyến của tam giác BCE (AE = AC)

=> Tam giác BCE cân tại B                (1)

Mà ta có: \(\widehat{ABC}+\widehat{C}=90^0\)

hay \(30^0+\widehat{C}=90^0\Rightarrow\widehat{C}=60^0\)              (2)

Từ (1) và (2) => Tam giác BCE đều

b) Ta có: A là trung điểm của EC (AE = EC)

=> \(AC=\frac{1}{2}EC\)

Mà EC = BC (Tam giác BCE đều)

=> \(AC=\frac{1}{2}BC\)(đpcm)

17 tháng 11 2016

ko biết

 

2 tháng 3 2020

Tham khảo: Câu hỏi của Lee Linh 

10 tháng 5 2017

Nguyễn Huy TúAce Legonasoyeon_Tiểubàng giảiTrần Việt LinhHoàng Lê Bảo NgọcVõ Đông Anh TuấnPhương An

(ko vẽ hình và làm câu a,b,c cũng đc,chủ yếu là câu d mọi người giúp mk vs nhé)

11 tháng 5 2017

Xuân Tuấn TrịnhTuấn Anh Phan Nguyễn

4 tháng 12 2018

cho mk sửa xíu"câu c) á,trên nửa... nha chứ bên trên là mk viết sai á"!xl mí bn nha!

4 tháng 12 2018

Hình bạn tự vẽ

a) Xét tam giác BMA và tam giác CMD , có:

              BM=MC ( vì M là trung điểm của BC)

              góc BMA = góc CMD( 2 góc đối đỉnh)

               AM=MB ( giả thiết )

=> Tam giác BMA = tam giác CMD ( c-g-c )

=> góc BAM = góc CDM ( 2 góc tương ứng )(đpcm)

b) Xét tam giác BMD và tam giác CMA , có:

             BM=MC ( vì M là trung điểm của BC)

             góc BMD = góc CMA( 2 góc đối đỉnh)

             AM=MB ( giả thiết )

=> Tam giác BMD = tam giác CMA ( c-g-c )

=> BD = AC ( 2 cạnh tương ứng ) ( đpcm )

=> góc BDM = góc MAC ( 2 góc tương ứng )

Mà góc BMD và góc MAC ở vị trí sole trong

=> AC // BD ( dấu hiệu nhận biết 2 đường thẳng song song) ( đpcm )

Còn lại dễ bạn tự làm nha mỏi tay quá