K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
19 tháng 6

3.5:

Xét `\DeltaCID` có:

`\hat{IDC}+\hat{ICD}+\hat{CID}=180^o`

`\hat{IDC}+\hat{ICD}=180^o-\hat{CID}`

`\hat{IDC}+\hat{ICD}=180^o-105^o=75^o`

Mà: `ID,IC` lần lượt là phân giác của `\hat{D},\hat{D}

Suy ra: `\hat{D}=2\hat{IDC},\hat{C}=2\hat{ICD}`

`->1/2\hat{D}+1/2\hat{C}=75^o`

`->\hat{D}+\hat{C}=75^o*2=150^o`

Xét tứ giác `ABCD` có:

`\hat{A}+\hat{B}+\hat{C}+\hat{D}=360^o`

`->\hat{A}+\hat{B}=360^o-(\hat{C}+\hat{D})`

`->\hat{A}+\hat{B}=360^o-150^o`

`->\hat{A}+\hat{B}=210^o`

`->\hat{A}=210^o-\hat{B}`

Mà: `\hat{A}-\hat{B}=30^o`

`->210^o-\hat{B}-\hat{B}=30^o`

`->2\hat{B}=210^o-30^o=180^o`

`->\hat{B}=180^o/2=90^o`

Suy ra: `\hat{A}=210^o-90^o=120^o`

3.5:

Xét ΔCID có \(\hat{ICD}+\hat{IDC}+\hat{CID}=180^0\)

=>\(\hat{ICD}+\hat{IDC}=180^0-105^0=75^0\)

=>\(\frac12\left(\hat{BCD}+\hat{CDA}\right)=75^0\)

=>\(\hat{BCD}+\hat{CDA}=75^0\cdot2=150^0\)

Xét tứ giác ABCD có \(\hat{BAD}+\hat{ABC}+\hat{BCD}+\hat{CDA}=360^0\)

=>\(\hat{BAD}+\hat{ABC}=360^0-150^0=210^0\)

\(\hat{BAD}-\hat{ABC}=30^0\)

nên \(\hat{BAD}=\frac{210^0+30^0}{2}=120^0;\hat{ABC}=120^0-30^0=90^0\)

3.4:

Xét tứ giác ABCD có \(\hat{BAD}+\hat{ABC}+\hat{BCD}+\hat{ADC}=360^0\)

=>\(\hat{BCD}+\hat{ADC}=360^0-\left(\hat{BAD}+\hat{ABC}\right);\hat{BAD}+\hat{ABC}=360^0-\left(\hat{BCD}+\hat{ADC}\right)\)

Xét ΔEAB có \(\hat{EAB}+\hat{EBA}+\hat{AEB}=180^0\)

=>\(\hat{BEA}+\frac12\left(\hat{BAD}+\hat{ABC}\right)=180^0\)

=>\(\hat{BEA}+\frac12\left\lbrack360^0-\left(\hat{ADC}+\hat{BCD}\right)\right\rbrack=180^0\)

=>\(\hat{BEA}+180^0-\frac12\left(\hat{ADC}+\hat{BCD}\right)=180^0\)

=>\(\hat{BEA}=180^0-180^0+\frac12\left(\hat{ADC}+\hat{BCD}\right)=\frac12\left(\hat{ADC}+\hat{BCD}\right)\)

Vì AE và AF là hai tia phân giác của hai góc kề bù

nên AE⊥AF

Vì BF,BE là hai tia phân giác của hai góc kề bù

nên BF⊥BE

Xét tứ giác FAEB có \(\hat{FAE}+\hat{FBE}+\hat{AFB}+\hat{AEB}=360^0\)

=>\(\hat{AFB}+\hat{AEB}=360^0-90^0-90^0=180^0\)

=>\(\hat{AFB}=180^0-\frac12\left(\hat{ADC}+\hat{BCD}\right)=\frac12\left(360^0-\hat{ADC}-\hat{BCD}\right)=\frac12\cdot\left(\hat{BAD}+\hat{ABC}\right)\)

a: Xét ΔKAD và ΔBDA có

\(\hat{KAD}=\hat{BDA}\) (hai góc so le trong, AK//BD)

AD chung

\(\hat{KDA}=\hat{BAD}\) (hai góc so le trong, AB//CD)

Do đó: ΔKAD=ΔBDA

=>KA=BD

mà BD=AC

nên AK=AC

=>ΔAKC cân tại A

b: ΔAKC cân tại A

=>\(\hat{AKC}=\hat{ACK}\)

\(\hat{AKC}=\hat{BDC}\) (hai góc đồng vị, BD//AK)

nên \(\hat{BDC}=\hat{ACD}\)

Xét ΔBDC va ΔACD có

BD=AC

\(\hat{BDC}=\hat{ACD}\)

CD chung

Do đó: ΔBDC=ΔACD

=>\(\hat{BCD}=\hat{ADC}\)

=>ABCD là hình thang cân

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)

2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)

\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)

\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)

4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)

5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)

7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)

8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)

10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)

11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)

15 tháng 8

bạn lưu ảnh rồi gửi qua file đi ạ chứ bn cóp sang thì ko hiện ảnh mất rồi

21 giờ trước (21:42)

21 giờ trước (21:48)

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>\(HB=HC=\frac{BC}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=100-36=64=8^2\)

=>HA=8(cm)

b: Diện tích tam giác ABC là:

\(S_{ABC}=\frac12\cdot AH\cdot BC=\frac12\cdot12\cdot8=4\cdot12=48\left(\operatorname{cm}^2\right)\)

Bài 13:

a: \(\left\lbrack5\left(x-2y\right)^3\right\rbrack:\left(5x-10y\right)\)

\(=\frac{5\left(x-2y\right)^3}{5\cdot\left(x-2y\right)}\)

\(=\left(x-2y\right)^2\)

b: \(\left\lbrack5\left(a-b\right)^3+2\left(a-b\right)^2\right\rbrack:\left(b-a\right)^2\)

\(=\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(a-b\right)^2}\)

\(=\frac{5\left(a-b\right)^3}{\left(a-b\right)^2}+\frac{2\left(a-b\right)^2}{\left(a-b\right)^2}\)

=5(a-b)+2

c: Sửa đề: \(\left(x^3+8y^3\right):\left(x+2y\right)\)

\(=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}\)

\(=x^2-2xy+4y^2\)

Bài 11:

a: Gọi ba số tự nhiên liên tiếp lần lượt là a;a+1;a+2

Tích của hai số sau lớn hơn tích của hai số đầu là 52 nên ta có:

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=52\)

=>\(\left(a+1\right)\left(a+2-a\right)=52\)

=>2(a+1)=52

=>a+1=26

=>a=25

Vậy: ba số tự nhiên liên tiếp cần tìm là 25;25+1=26; 25+2=27

b: a chia 5 dư 1 nên a=5x+1

b chia 5 dư 4 nên b=5y+4

ab+1

\(=\left(5x+1\right)\left(5y+4\right)+1\)

=25xy+20x+5y+4+1

=25xy+20x+5y+5

=5(5xy+4x+y+1)⋮5

c: \(Q=2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

=6n⋮6

Bài 8:

a: \(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy-3x^3+3x^3+2y^3-y^3\)

\(=x^2+2xy+y^3\)

Khi x=5;y=4 thì \(A=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)

b: x=-1;y=-1

=>xy=1

\(x^2y^2=\left(xy\right)^2=1^2=1;x^4y^4=\left(xy\right)^4=1^4=1\) ; \(x^6y^6=\left(xy\right)^6=1^6=1;x^8y^8=\left(xy\right)^8=1^8=1\)

=>B=1-1+1-1+1=1

12 tháng 8

13 tháng 8

a) Số tiền Linh dùng mua bút bi:

50000 - 20000 = 30000 (đồng)

Giá tiền mỗi bút chì sau khi giảm:

x - 1000 (đồng)

Phân thức biểu thị số bút chì Linh mua được:

loading...

Phân thức biểu thị số bút bi Linh mua được:

loading...

b) Với x = 3000, số bút bi Linh mua được:

30000 : 3000 = 10 (bút)