![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+2x+5\)
\(=x^2+2.x.1+1+4\)
\(=\left(x+1\right)^2+4\ge4\)
Min \(=4\Leftrightarrow x+1=0\Rightarrow x=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
(x-1)(x+2)(x+3)(x+6)
= [(x-1)(x+6)].[(x+2)(x+3)]
=(x^2+5x-6)(x^2+5x+6)
=(x^2+5x)^2 -6^2 = (x^2+5x)^2 -36
vì (x^2+5x)^2 > hoặc bằng 0 => (x-1)(x+2)(x+3)(x+6) > hoặc bằng -36.
Dấu bằng xảy ra khi (x^2+5x)^2=0 <=> x=0 hoặc x= -5
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1-\frac{4}{x}+\frac{1}{x^2}=\left(4-\frac{4}{x}+\frac{1}{x^2}\right)-3=\left(2-\frac{1}{x}\right)^2-3\)
\(\Rightarrow A\ge-3\)Dấu "=" xảy ra khi \(\left(2-\frac{1}{x}\right)^2=0\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}\)
Vậy GTNN của A=-3 khi \(x=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)