\(\frac{5}{2.3.4}\)+\(\frac{5}{3.4.5}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

làm tiếp theo

\(S=\frac{5}{2}.\left(\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}+\frac{2}{99.100.101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{98.99}-\frac{1}{99.100}+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{2.3}-\frac{1}{100.101}\right)\)

còn lại tự làm

6 tháng 5 2016

\(S=\frac{5}{2\cdot3\cdot4}+\frac{5}{3\cdot4\cdot5}+......+\frac{5}{99\cdot100\cdot101}\)

\(S\frac{2}{5}=\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+.....+\frac{2}{99\cdot100\cdot101}\)

\(\frac{2}{2\cdot3\cdot4}=\frac{1}{2\cdot3}-\frac{1}{3\cdot4}\)

\(\frac{2}{3\cdot4\cdot5}=\frac{1}{3\cdot4}-\frac{1}{4\cdot5}\)

.............

\(\frac{2}{99\cdot100\cdot101}=\frac{1}{99\cdot100}-\frac{1}{100\cdot101}\)

\(\Rightarrow S\frac{2}{5}=\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+.........+\frac{1}{99\cdot100}-\frac{1}{100\cdot101}\)

\(\Rightarrow S\frac{2}{5}=\frac{1}{2\cdot3}-\frac{1}{100\cdot101}\)

\(\Rightarrow S\frac{2}{5}=\frac{1}{6}-\frac{1}{10100}\)

\(\Rightarrow S\frac{2}{5}=\frac{5047}{30300}\)

\(\Rightarrow S=\frac{5047}{30300}:\frac{2}{5}\)

\(\Rightarrow S=\frac{5047}{30300}\cdot\frac{5}{2}\)

\(\Rightarrow S=\frac{5047}{12120}\)

16 tháng 7 2017

\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)

\(C=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+....+\frac{101-99}{99.100.101}\)

\(C=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}+\frac{2}{100.101}\)

\(C=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(C=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)

\(C=\frac{1}{2}\cdot\frac{5049}{10100}=\frac{5049}{20200}\)

16 tháng 7 2017

Bài này hơi dài nên bạn tham khảo tại đây nha :

Câu hỏi của Kim Sura xXx pÉ heO - Toán lớp 6 - Học toán với OnlineMath

8 tháng 7 2016

                            Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

                                  \(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

                                \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

                               \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

                            \(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

                           \(A=\frac{1}{2}.\left(\frac{4950-1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)

                         Ủng hộ mk nha!!

14 tháng 5 2019

hello

15 tháng 5 2016

2A=\(\frac{2}{1\cdot2\cdot3}\)+\(\frac{2}{2\cdot3\cdot4}\)+\(\frac{2}{3\cdot4\cdot5}\)+...+\(\frac{2}{2014\cdot2015\cdot2016}\)

2A=\(\frac{1}{1\cdot2}\)-\(\frac{1}{2\cdot3}\)+\(\frac{1}{2\cdot3}\)-\(\frac{1}{3\cdot4}\)+\(\frac{1}{3\cdot4}\)-\(\frac{1}{4\cdot5}\)+...+\(\frac{1}{2014\cdot2015}\)-\(\frac{1}{2015\cdot2016}\)

2A=\(\frac{1}{2}\)-\(\frac{1}{2015\cdot2016}\)

A=(\(\frac{1}{2}\)-\(\frac{1}{2015\cdot2016}\)):2

A=\(\frac{1}{2}\):2-\(\frac{1}{2015\cdot2016}\):2

A=\(\frac{1}{4}\)-\(\frac{1}{2015\cdot2016\cdot2}\)<\(\frac{1}{4}\)

Vậy A<\(\frac{1}{4}\)