K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

AD=BD (vì D là trung điểm của AB)           (1)

DE// BC ( gt)                                              (2)

Từ (1) và (2):

\(\Rightarrow\)AE=EC 

(vì đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba.)
 

Ta lại có:

AE=EC (chứng minh trên)           (3)

EF//AB (gt)                                      (4)

Từ (3) và (4):

\(\Rightarrow\)BF=FC

(vì đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba.)
 

bạn ơi! chép đúng đề ko? b) tam giác ABE làm sao = tam giác  EFC được?

7 tháng 10 2017

\(\left(x-3\right).\left(x-2015\right)< 0\)

\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu

\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)

\(\Rightarrow3< x< 2015\)

\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)

( ko bt đúng hay sai nx )

7 tháng 10 2017

thám tử

\(\left(x-3\right)\left(x-2015\right)< 0\)

Với mọi \(x\in R\) thì:

\(x-2015< x-3\)

Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)

Nên \(3< x< 2015\)

21 tháng 9 2017

Cho mk xin cái đề bài

21 tháng 9 2017

undefined

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)

25 tháng 7 2017

Theo mình nghĩ thì đề thiếu là tam giác ABC vuông tại A nhé!

Bạn xem lại đề!:)

25 tháng 7 2017

Đúng đó

15 tháng 9 2017

\(\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|=0\)

\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|\ge0\forall x\\\left|y+\dfrac{2}{3}\right|\ge0\forall y\\\left|x^2+xz\right|\ge0\forall x;z\end{matrix}\right.\) \(\Rightarrow\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|=0\\\left|y+\dfrac{2}{3}\right|=0\\\left|x^2+xz\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{2}{3}\\z=-\dfrac{1}{2}\end{matrix}\right.\)

25 tháng 7 2017

Hehehe!oaoa Dễ tek mà ko làm đc!bucqua

Nhớ mối thù năm xưa chứ e.eoeoleuleu

25 tháng 7 2017

sí sào, ai thèm mày giúp.

hiha

11 tháng 10 2017

a+1/2=c+2/4=c+1/2=>a=c=>3a=3c

b+2/3=c+2/4=c+1/2=>b=c+1/2-2/3=c-1/6=>2b=2c-1/3

3a-2b+c=3c-2c+1/3+c=2c+1/3=105

=>2c=314/3=>c=157/3

b=c-1/6=157/3-1/6=313/6

a=c=157/3

11 tháng 10 2017

Dù kh hiểu gì yeu Nhưng mình camon cậu ạ ok

25 tháng 4 2017

Mấy cái nghiệm nghiệm này dễ lẫn lộn v~ nhìn mãi mới thấy toán 7 thì nghiệm chắc chắn = 0 :v

\(2\left(x+3\right)-5x+2=0\)

\(\Leftrightarrow2x+6-5x+2=0\)

\(\Leftrightarrow-3x+8=0\)

\(\Rightarrow x=\dfrac{8}{3}\)

Vậy nghiệm của đa thức bằng \(\dfrac{8}{3}\)

2 tháng 3 2017

Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)

Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)

Dấu \("="\) xảy ra khi:

\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)

Vậy \(1\le x\le5.\)

2 tháng 3 2017

Cho mk thêm cái ạ:

\(x\in\left\{1;2;3;4;5\right\}\)

Vậy \(x\in\left\{1;2;3;4;5\right\}\)