Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát, giả sử \(a+b\ge c+d\)
Từ giả thiết suy ra \(b+c\ge\frac{a+b+c+d}{2}\)
\(A=\frac{b}{c+d}+\frac{c}{a+b}=\frac{b+c}{c+d}-\left(\frac{c}{c+d}-\frac{c}{a+b}\right)\)
\(\ge\frac{a+b+c+d}{2\left(c+d\right)}-\left(\frac{c+d}{c+d}-\frac{c+d}{a+b}\right)\)
Đặt a + b = x ; c + d = y ( \(x\ge y>0\), ta có :
\(A\ge\frac{x+y}{2y}-\frac{y}{y}+\frac{y}{x}=\frac{x}{2y}+\frac{1}{2}-1+\frac{y}{x}=\left(\frac{x}{2y}+\frac{y}{x}\right)-\frac{1}{2}\ge2\sqrt{\frac{x}{2y}.\frac{y}{x}}-\frac{1}{2}=\sqrt{2}-\frac{1}{2}\)
Vậy GTNN của A là \(\sqrt{2}-\frac{1}{2}\Leftrightarrow d=0,x=y\sqrt{2};b+c=a+d\)
chẳng hạn \(a=\sqrt{2}+1;b=\sqrt{2}-1;c=2;d=0\)
Bài 2:
Áp dụng Bdt Cauchy-Schwarz dạng engel, ta có
\(VT\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
Mà theo Bđt cosi
\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
\(=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)
\(VT=a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\ge a.\frac{4}{b+c}+b.\frac{4}{c+a}+c.\frac{4}{a+b}=4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Lời giải:
Trước tiên, ta sẽ CM bất đẳng thức sau:\(P\geq \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)\((\star)\)
Thật vậy: BĐT tương đương với :
\(a^2\left (\frac{1}{b+c}-\frac{1}{a+b} \right )+b^2\left ( \frac{1}{c+a}-\frac{1}{b+c} \right )+c^2\left ( \frac{1}{a+b}-\frac{1}{a+c} \right )\geq 0\)
\(\Leftrightarrow a^2(a^2-c^2)+b^2(b^2-a^2)+c^2(c^2-b^2)\geq 0\)
\(\Leftrightarrow (a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2\geq 0\) (luôn đúng)
BĐT \((\star)\) được chứng minh .
Giờ ta chỉ cần tìm min của \(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
Để ý rằng \(A-\left(\frac{b^2}{a+b}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\right)=\sum \left(\frac{a^2-b^2}{a+b}\right)=a-b+b-c+c-a=0\)
\(\Rightarrow 2A=\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\). Sử dụng Cauchy-Schwarz:
\(2A\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{2(a+b+c)}=\frac{1008}{a+b+c}\)
Sử dụng AM_GM: \(\sqrt{2016}=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\geq \frac{a+b}{\sqrt{2}}+\frac{b+c}{\sqrt{2}}+\frac{c+a}{\sqrt{2}}\)
\(\Leftrightarrow a+b+c\leq 12\sqrt{7}\) suy ra \(A\geq 6\sqrt{7}\) suy ra \(P_{\min}=6\sqrt{7}\)
Dấu bằng xảy ra khi \(a=b=c=4\sqrt{7}\)
no la bdt bunhia do ban . nhan a+b+c voi ca 2 ve . ap dung bunhia la ra
Câu đề HN vừa thi hôm trước, sửa thành tìm max
Áp dụng BĐT Bunyakovsky ta có:
\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)
\(=6\left(a+b+c\right)\le6\)
\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\sqrt{6}\)
Dấu "=" xảy ra khi a = b = c = 1/3
Làm xong mới thấy không giống lắm hihi:D