Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>|x-1/4|=3/4
=>x-1/4=3/4 hoặc x-1/4=-3/4
=>x=1 hoặc x=-1/2
b: \(\left|x+\dfrac{1}{2}\right|=\dfrac{1}{2}-\dfrac{9}{4}=\dfrac{2-9}{4}=-\dfrac{7}{4}\)(vô lý)
c: \(\Leftrightarrow\left[{}\begin{matrix}2x+5=1-x\\2x+5=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\x=-6\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{4}{3};-6\right\}\)
e: =>|3/2-x|=0
=>3/2-x=0
hay x=3/2
1, x2 = 0
=> x=0
2,x2=1
=> x= 1 hoặc x=-1
3,x2=3
=>\(x=\sqrt{3}\)
4,x2=6
=>\(x=\sqrt{6}\)
5,x2=7
=>\(x=\sqrt{7}\)
\(\left[\frac{-2}{5}x^3.\left(2x-1\right)^m+\frac{2}{5}x^{m+3}\right]:\left(\frac{-2}{5}x^3\right)\)
\(=\left[\frac{2}{5}x^3\left(2x+1\right)^m+\frac{2}{5}x^3.\left(\frac{2}{5}\right)^m\right]:\left(\frac{-2}{5}x^3\right)\)
\(=\left\{\frac{2}{5}x^3.\left[\left(2x+1\right)^m+\left(\frac{2}{5}\right)^m\right]\right\}:\left(\frac{-2}{5}x^3\right)\)
\(=\left\{\frac{2}{5}x^3.\left[2x+\frac{7}{5}\right]^m\right\}:\frac{-2}{5}x^3\)
\(=-\left(2x+\frac{7}{5}\right)^m\)
đến đây thì mình chịu
a) \(\left(x-5\right)\left(x+8\right)-\left(x+4\right)\left(x-1\right)\)
\(=\left(x^2+3x-40\right)-\left(x^2+3x-4\right)\)
\(=x^2+3x-40-x^2-3x+4\)
\(=-36\)
b)\(x^4\left(x^2-1\right)\left(x^2+1\right)\)
\(=x^4\left(x^4-1\right)\)
\(=x^8-x^4\)
\(A=x^2-3x+5=x^2-\frac{3}{2}x-\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}=x\left(x-\frac{3}{2}\right)-\frac{3}{2}\left(x-\frac{3}{2}\right)+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x-\frac{3}{2}=0< =>x=\frac{3}{2}\)
Vậy minA=11/4 khi x=3/2
\(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\) (với mọi x)
Dấu "=" xảy ra \(< =>5x^2=0< =>x=0\)
Vậy minB=5 khi x=0
\(A=x^2-3x+5\)
\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy GTNN của A là \(\frac{11}{4}\)khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
b)\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\)
Vì \(5x^2\ge o\)với mọi x
\(\Rightarrow5x^2+5\ge5\)
Vậy GTNN của B là 5 khi x=o
a.\(\left(3x-2\right)^2=16\)
Ta có: \(\left(3x-2\right)^2=16\)
\(\Rightarrow\left(3x-2\right)^2=\left(4\right)^2\)
\(\Rightarrow3x-2=4\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
b. \(\left(\dfrac{4}{5}x-\dfrac{3}{4}\right)^3=\dfrac{-8}{125}\)
\(\Rightarrow\left(\dfrac{4}{5}x-\dfrac{3}{4}\right)^3=\left(\dfrac{-2}{5}\right)^3\)
\(\Rightarrow\dfrac{4}{5}x-\dfrac{3}{4}=\dfrac{-2}{5}^{ }\)
\(\Rightarrow\dfrac{4}{5}x-=\dfrac{7}{20}\)
\(\Rightarrow x=\dfrac{7}{16}\)
ban co the bao minh cach lam ko
Ta có: \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Leftrightarrow\left(x-1\right)^x.\left(x-1\right)^2=\left(x-1\right)^x.\left(x-1\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Rightarrow x-1=\left\{-1;1\right\}\)
Nếu x - 1 = - 1 thì x = 0
Nếu x - 1 = 1 thì x = 2
Vậy x mang 2 giá trị là: x =2 hoặc x = 0