K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

12+22+32+...+n2
=1.(2−1)+2.(3−1)+3.(4−1)+...+n[(n+1)−1]
=[1.2+2.3+3.4+...+n(n+1)]-(1+2+3+...+n)
=[n(n+1)(n+2)-0.1.2]/3-n(n+1)/2
=n(n+1)(2n+1)/6

31 tháng 3 2018

câu 1 mk hổng biết

câu 2 giải như sau

ta có : 12=3.4

A=3+32+33+34+....+32016=(3+32)+(33+34)+.....+(32015+32016)

                                         =(3.1+3.3)+(33.1+33.3)+(32015.1+32015.3)

                                         =3.(1+3)+33.(1+3)+....+32015.(1+3)

                                         =3.4+33.4+....+32015.4

                                         =4.(3+33+.....+32015)

Vì 4 chia hết cho 4=>4.(3+33+...+32015)            (1)

Vì tất cả các số hạng trong A đều là lũy thừa của 3 =>A chia hết cho 3            (2)

Từ (1) và (2) => A chia hết cho 3.4 =>A chia hết cho 12         (đpcm)

8 tháng 3 2016

k nha, câu trả lờii sẽ hiện ra

30 tháng 10 2020

1.  nếu n lẻ thì n có dạng n= 2k +1

=> n+ 3= 2k + 4 chia hết cho 2

nếu n chãn thì n có dạng 2k

=> n+ 6 = 2k + 6 chia hết cho 2

=> (n+ 3) x( n+6) chia hết cho 2

2.a)

nếu n+ 1 chia hết cho 7 thì n+ 1 thuộc bội của 7 

=> n+ 1 = { 7;14;21;28;35;...}

=> n={ 6;13;20;27;34;...}

b)

\(\frac{n+6}{n+8}=\frac{n+8-2}{n+8}\)\(=1-\frac{2}{n+8}\)

Để n+6 chia hết cho n+8 thì 2 phải chia hết cho n+8

=>n+8 thuộc ước của 2 => n+8={ -1;1;2;-2}

ta có nếu n+8 =-1=> n= -9(loại vì n là STN)

          nếu n+8 =-2=> n= -10(loại vì n là STN)

          nếu n+8 =1=> n= -7(loại vì n là STN)

          nếu n+8 =2=> n= -6(loại vì n là STN)

vậy n+6 ko chia hết cho n+8 với mọi n là số tự nhiên

c)\(\frac{2n+3}{n+1}=\frac{2\left(n+1\right)+1}{n+1}=2+\frac{1}{n+1}\)

bậy để 2n+3 chia hết cho n+1 thì 1 phải chia hết cho n+1

=> n+1 thuộc ước của 1=> n+1={ 1;-1}

nếu n+1= 1 thì n+0 (chọn)

      n+!= -1 thì n= -2(loại vì nlà STN)

vậy n=0 thì 2n+3 chia hết cho n+1

12 tháng 4 2015

t thử = máy tính rùi nhưng k đk

 

20 tháng 11 2017

A, 

Từ đề bài ta có

\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

suy ra d=1 suy ra đpcm

B nhân 3 vào số đầu tiên

nhâm 2 vào số thứ 2

rồi trừ đi được đpcm

C,

Nhân 2 vào số đầu tiên rồi trừ đi được đpcm

# Mik làm ý A trước nhé, mik sợ dài :

- Với n = 1 \(\Rightarrow1=\frac{1.2.3}{6}\)( đúng )

- Giả sử đẳng thức cũng đúng với\(n=k\)hay :

\(1^2+2^2+3^2+...+k^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta cần chứng minh nó cũng đúng với\(n=k+1\)hay :

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\)

Thật vậy, ta có:

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(\Rightarrow\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\)\(\left(k+1\right)\left(\frac{2k^2+k+6k+6}{6}\right)\)

\(\Rightarrow\)\(\left(k+1\right)\left(\frac{2k^2+7k+6}{6}\right)=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)( đpcm )

# giờ mik làm ý B nha !

- Với n = 1 \(\Rightarrow\)1 = 1 ( đúng )

Giả sử bài toán đúng với\(n=k\left(n\inℕ^∗\right)\)thì ta có :

1 + 23 + 33 + .... + k3 = \(\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với\(n=k+1\)tức là :

13 + 23 + 33 + ...... + n3 = \(\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(B=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\)theo ( 1 )

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)theo ( 2 )

\(\Rightarrow\left(1\right),\left(2\right)\)đều đúng

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\)\(\frac{n^2\left(n+1\right)^2}{4}\)

\(\Rightarrow\)\(1^3+2^3+...+n^3=\)\(\frac{n^2\left(n+1\right)^2}{4}\)( đpcm )

 
2 tháng 3 2018

\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)

2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)

3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)

Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))

2 tháng 3 2018

chị thương ơi gửi em câu 6,7