K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

4n-5 chia het cho 2n-1

=>2.(2n-1)-3 chia het cho 2n-1

=>-3 chia het cho 2n-1

=>2n-1 E Ư(-3)={-3;-1;1;3}

=>2n E {-2;0;2;4}

=> n E {-1;0;1;2}

27 tháng 1 2016

conan diet nguoi ghe wa so wa

DD
8 tháng 10 2021

Câu 1: 

\(2n+1=2n-2+3=2\left(n-1\right)+3⋮\left(n-1\right)\Leftrightarrow3⋮\left(n-1\right)\)

mà \(n\)là số nguyên nên \(n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow n\in\left\{-2,0,2,4\right\}\).

Câu 2: 

\(4n-5=4n-2-3=2\left(2n-1\right)-3⋮\left(2n-1\right)\Leftrightarrow3⋮\left(2n-1\right)\)

mà \(n\)là số nguyên nên \(2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow n\in\left\{-1,0,1,2\right\}\).

C1:

2n+1⋮n+1

=> 2(n+1)-1⋮n+1

=> -1⋮n+1( vi 2(n+1)⋮n+1)

=> n+1∈U(-1)=(1,-1)

=>n=0,-2

C2:

Ta có: 4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>2.(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1=Ư(3)=(-1,-3,1,3)

=>2n=(0,-2,2,4)

=>n=(0,-1,1,2)

Vậy n=0,-1,1,2

27 tháng 1 2016

Có 4n-5 chia hết cho 2n-1       (1)

Mà 2n-1 chia hết cho 2n-1=>2(2n-1) chia hết cho 2n-1=>4n-2 chia hết cho 2n-1        (2)

Từ (1|) và (2) =>(4n-5)-(4n-2) chia hết cho 2n-1

=>4n-5-4n+2 chia hết cho 2n-1

=>-3 chia hết cho 2n-1

=>2n-1 thuộc ước của -3

Có Ư(-3)={-3;-1;1;3}

TH1 2n-1=-3=>n=-1

TH2 2n-1=-1=>n=0

TH3 2n-1=1=>n=1

TH4 2n-1=3=>n=2

Vậy n thuộc {-1;0;1;2}

 

27 tháng 1 2016

Làm bên dưới rồi nhé,n E {-1;0;1;2}

30 tháng 12 2024

a;   (2n + 1) ⋮ (6  -n)

     [-2.(6 - n) + 13] ⋮ (6 - n)

                        13 ⋮ (6 - n)

       (6 - n) ϵ  Ư(13) = {-13; -1; 1; 13}

        Lập bảng ta có:

6 - n -13 -1 1 13
n 19 7 5 -7
n ϵ Z  tm tm tm tm

Theo bảng trên ta có: n ϵ {19; 7; 5; -7} 

Vậy các giá trị nguyên của n thỏa mãn đề bài là:

n ϵ {19; 7; 5; -7} 

   

 

 

30 tháng 12 2024

b; 3n ⋮ (5  - 2n)

   6n ⋮ (5  - 2n)

  [15 - 3(5 - 2n)] ⋮ (5  - 2n)

     15 ⋮ (5  -2n) 

  (5  - 2n) ϵ Ư(15) = {-15; -1; 1; 15}

Lập bảng ta có:

5 - 2n -15 -1 1 15
n 10 3 2 -5
n ϵ Z tm tm tm tm

  Theo bảng trên ta có: n ϵ {10; 3; 2; -5}

Vậy các giá trị nguyên n thỏa mãn đề bài là:

n ϵ {-5; 2; 3; 10}

 

16 tháng 12 2023

a,  4n + 3 ⋮ 2n - 1

    4n - 2 + 5 ⋮ 2n - 1

    2.(2n - 1) + 5 ⋮ 2n - 1

                      5 ⋮ 2n - 1

    2n  -1 \(\in\) Ư(5) = {-5; -1; 1; 5}

    n \(\in\) {-2; 0; 1; 3}

16 tháng 12 2023

b, 3n - 5 ⋮ n + 1

   3n + 3 - 8 ⋮ n + 1

   3.(n + 1) - 8 ⋮ n + 1

                   8 ⋮ n + 1

  n + 1 \(\in\) Ư(2) = {-8; -4; -2; -1; 1; 2; 4; 8}

 n \(\in\) { -9; -5; -3; -2; 0; 1; 3; 7}

 

23 tháng 2 2021

a)Ta có: 2n+9 chia hết n+3

<=>(2n+9)-2(n+3) chia hết n+3

<=>(2n+9)-(2n+6) chia hết n+3

<=>3 chia hết n+3

<=>n+3 thuộc {1;3}

<=>n=0

Vậy n = 0

b) Ta có 3n-1 chia hết cho 3-2n

=> 6n-2 chia hết cho 3-2n

=> 3(3-2n)-11 chia hết cho 3-2n

=> 11 chia hết cho 3-2n

=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}

• 3-2n=1 => n=1

• 3-2n=11=> n ko là số tự nhiên

Vậy n=1

c) (15 - 4n) chia hết cho n

=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}

d)  n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5 

e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 = 

13n1213n-1-2

=> n-1 là ước dương của 13

=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13

=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12

Mà n thuộc N và n<8 => n=0 hoặc n=2

g)

6n+94n16n+9⋮4n−1

2.(6n+9)4n1⇒2.(6n+9)⋮4n−1

12n+184n1⇒12n+18⋮4n−1

12n3+214n1⇒12n−3+21⋮4n−1

3.(4n1)+214n1⇒3.(4n−1)+21⋮4n−1

Vì 3.(4n1)4n1214n13.(4n−1)⋮4n−1⇒21⋮4n−1

Mà 4n - 1 chia 4 dư 3; 4n114n−1≥−1 do nNn∈N

4n1{1;3;7}⇒4n−1∈{−1;3;7}

4n{0;4;8}⇒4n∈{0;4;8}

n{0;1;2}

31 tháng 10 2021

Xin lỗi, mình sai chính tả một chút ở phần cuối ạ!

10 tháng 9 2016

\(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=2-\frac{3}{2n-1}\)

Vậy để 4n-5 chia hết cho 2n-1 thì \(2n-1\inƯ\left(3\right)\)

Mà Ư(3)={-1;1;3;-3}

+)2n-1=1 <=> n=1

+)2n-1=-1 <=> n=0

+)2n-1=3 <=> n=2

+)2n-1=-3 <=> n=-1

Vậy n={-1;0;1;2}

10 tháng 9 2016

\(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=\frac{2\left(2n-1\right)}{2n-1}-\frac{3}{2n-1}=2-\frac{3}{2n-1}\in Z\)

\(\Rightarrow3⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(3\right)=\left\{1;3\right\}\left(n\in N\right)\)

\(\Rightarrow2n\in\left\{2;4\right\}\)

\(\Rightarrow n\in\left\{1;2\right\}\)

14 tháng 10 2019

Lưu ý là lớp 6 không cần thiết phải viết dấu "=>". 

a. Với số tự nhiên n.

Ta có: \(3n+15⋮n+4\) và \(3\left(n+4\right)⋮n+4\)

=> \(\left(3n+15\right)-3\left(n+4\right)⋮n+4\)

=> \(3n+15-3n-12⋮n+4\)

=> \(\left(3n-3n\right)+\left(15-12\right)⋮n+4\)

=> \(3⋮n+4\)

=> \(n+4\in\left\{1;3\right\}\) 

+) Với n + 4 = 1 vô lí vì n là số tự nhiên.

+) Với n + 4 = 3 vô lí vì n là số tự nhiên

Vậy không có n thỏa mãn.

b) Với số tự nhiên n.

Có: \(\left(4n+20\right)⋮\left(2n+5\right)\) và  \(2\left(2n+5\right)⋮\left(2n+5\right)\)

=> \(\left(4n+20\right)-2\left(2n+5\right)⋮2n+5\)

=> \(4n+20-4n-10⋮2n+5\)

=> \(\left(4n-4n\right)+\left(20-10\right)⋮2n+5\)

=> \(10⋮2n+5\)

=> \(2n+5\in\left\{1;2;5;10\right\}\)

+) Với 2n + 5 = 1 loại

+) với 2n + 5 = 2 loại

+) Với 2n + 5 =5 

            2n    = 5-5

              2n    = 0

            n      = 0 Thử lại thỏa mãn

+ Với 2n + 5 = 10 

            2n    = 10 -5

             2n    = 5

               n    = 5/2  loại vì n là số tự nhiên.

Vậy n = 0.