![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{3}{4}\right)^x=\frac{81}{28^8}\)
\(\Rightarrow\left(\frac{3}{4}\right)^x=\frac{3^4}{\left(4.7\right)^8}\)
\(\Rightarrow\left(\frac{3}{4}\right)^x=\frac{3^4}{4^8.7^8}\)
\(\Rightarrow\left(\frac{3}{4}\right)^x=\frac{3^4}{4^4.4^4}:7^8\)
\(\Rightarrow\left(\frac{3}{4}\right)^x=\frac{3^4}{4^4}:\left(7^2\right)^4:4^4\)
\(\Rightarrow\frac{3^4}{4^4}:\left(\frac{3}{4}\right)^x=49^4.4^4\)
\(\Rightarrow\left(\frac{3}{4}\right)^4:\left(\frac{3}{4}\right)^x=\left(49.4\right)^4\)
\(\Rightarrow\left(\frac{3}{4}\right)^{4-x}=196^4\)
\(\Rightarrow\left(\frac{3}{4}\right)^{4-x}=196^{4-x}.196^4\)
\(\Rightarrow196^{4-x}:\left(\frac{3}{4}\right)^{4-x}=196^4\)
\(\Rightarrow\left(196:\frac{3}{4}\right)^{4-x}=196^4:\left(\frac{3}{4}\right)^4.\left(\frac{3}{4}\right)^4\)
\(\Rightarrow\left(196:\frac{3}{4}\right)^{4-x}=\left(196:\frac{3}{4}\right)^4.\left(\frac{3}{4}\right)^4\)
\(\Rightarrow\left(196:\frac{3}{4}\right)^{4-x}:\left(196:\frac{3}{4}\right)^4=\left(\frac{3}{4}\right)^4\)
\(\Rightarrow\left(\frac{196:\frac{3}{4}}{196:\frac{3}{4}}\right)^{4-x-4}=\left(\frac{3}{4}\right)^4\)
\(\Rightarrow1^{-x}=\left(\frac{3}{4}\right)^4\)=> Vô lý
| x - 1 | + | x2 - 1 | = 0
Vì \(\hept{\begin{cases}\left|x-1\right|\ge0,\forall x\\\left|x^2-1\right|\ge0,\forall x\end{cases}}\)=> | x - 1 | + | x2 - 1 | ≥ 0 ∀ x
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left|x-1\right|=0\\\left|x^2-1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=\pm1\end{cases}}\Leftrightarrow x=1\)