K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

a) \(\sqrt{\left(1+2\sqrt{3}\right)^2}-5\sqrt{3}\)

\(=\left|1+2\sqrt{3}\right|-5\sqrt{3}\)

\(=1+2\sqrt{3}-5\sqrt{3}\)

\(=1-3\sqrt{3}\)

b) \(3\sqrt{2x}+2\sqrt{4x}-6\sqrt{8x}\) (Điều kiện: \(x\ge0\))

\(=3\sqrt{2x}+2.2\sqrt{x}-6.2\sqrt{2x}\)

\(=-9\sqrt{2x}+4\sqrt{x}\)

\(\hept{\begin{cases}\frac{y}{2}-\frac{\left(x+y\right)}{5}=0,1\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0.1\end{cases}}\)

\(\hept{\begin{cases}\frac{\left(x+y\right)}{5}=\frac{y-0,2}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

\(\hept{\begin{cases}x+y=\frac{5y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

\(\hept{\begin{cases}x=\frac{5y-1}{2}-\frac{2y}{2}=\frac{3y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

Ta thay x vào biểu thức \(\frac{y}{5}-\frac{\left(x-y\right)}{2}\)ta đc

\(\frac{y}{5}-\frac{\left(\frac{3y-1}{2}-y\right)}{2}=0,1\)

\(\frac{3y-1-2y}{2}=\frac{y}{5}-\frac{0,5}{5}\)

\(\frac{y-1}{2}=\frac{y-0,5}{5}\)

\(5y-5=2y-1\Leftrightarrow5y-5-2y+1=0\Leftrightarrow3y-4=0\Leftrightarrow y=\frac{4}{3}\)

Thay y vào biểu thức \(\frac{3y-1}{2}\)ta đc

\(x=\frac{3.\frac{4}{3}-1}{2}=\frac{3}{2}\)

Vậy \(\left\{x;y\right\}=\left\{\frac{3}{2};\frac{4}{3}\right\}\)

17 tháng 9 2017

 hong pham mk làm khác bn cơ

17 tháng 9 2017

Đây nè :

 y=x^3+3x^2+1=(x+1)^3-3x <=> 
y-3=(x+1)^3-3x-3 hay 
y-3 = (x+1)^3 - 3(x+1) (*) 
Nhìn vào (*) ta thấy rằng nếu chọn hệ trục tọa độ mới IXY với gốc tọa độ tại I(-1;3) 
Khi đó X=x+1, Y=y-3 và hàm số trở thành Y=X^3 - 3X là hàm lẻ, đồ thị của nó (cũng chính là đồ thị hàm đã cho trong hệ tọa độ cũ) nhận I là tâm đối xứng. 
Vậy tâm đối xứng của đồ thị hs đã cho là I(-1;3) 


Nếu bạn đã học khảo sát hàm số bằng đạo hàm thì có cách này đơn giản hơn nhiều : 
y'=3x^2+6x (nghiệm của y'=0 là hoành độ các cực trị, nhưng ta không quan tâm) 
y''=6x+6 (nghiệm của y''=0 chính là hoành độ điểm uốn, cũng là tâm đối xứng) 
y''=6x+6=0=>x= -1=>y=3

7 tháng 7 2019

b) \(\sqrt{25a^2}+3a\) \(=5\left|a\right|+3a\)

Vì a > 0 => |a| = a

=> 5|a| + 3a = 5a + 3a = 8a

25 tháng 8 2021

cái nịt

30 tháng 8 2017

C1 : \(\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2}{\sqrt{x}+2}+\frac{2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\le2\)

C2 : \(\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{2\sqrt{x}+4-\sqrt{x}}{\sqrt{x}+2}=\frac{2\left(\sqrt{x}+2\right)-\sqrt{x}}{\sqrt{x}+2}=2-\frac{\sqrt{x}}{\sqrt{x}+2}\le2\)

30 tháng 8 2017

ĐKXĐ: \(x\ge0\)

\(\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\le2\)

Vậy GTLN là 2 khi x = 0.

17 tháng 7 2017

Ta có \(P=\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{8}-2}-\frac{\sqrt{15}-\sqrt{3}}{2-2\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{3}}\)

\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{2\left(1-\sqrt{5}\right)}\right).\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\left(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}\right).\left(\sqrt{7}-\sqrt{3}\right)=\frac{\sqrt{7}+\sqrt{3}}{2}.\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\frac{7-3}{2}=2\)

Vậy \(P=2\)

DD
10 tháng 2 2022

\(\left(x+2y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+2y=0\\y-1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

7 tháng 8 2016

\(a\left(a+2\right)< \left(a+1\right)^2\)

\(\Leftrightarrow a^2+2a< a^2+2a+1\)

\(\Leftrightarrow0< 1\)(luôn đúng)

Do bđt cuối luôn đúng nên bđt ban đầu đc cm

7 tháng 8 2016

Do a2 + 2a < a2 + 2a + 1

=> a.(a + 2) < a2 + a + a + 1

=> a.(a + 2) < a.(a + 1) + (a + 1)

=> a.(a + 2) < (a + 1)2 (đpcm)