Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)=1+x+x^2+...+x^{15}\)(1)
+) Với x = 1
Ta có: \(16=16\)đúng
=> (1) đúng với x = 1
+) Với x khác 1. Nhân cả hai vế của phương trình với x --1
Ta có:
pt <=> \(\left(x-1\right)\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)=\left(1+x+x^2+...+x^{15}\right)\left(x-1\right)\)
<=> \(\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)=x^{16}-1\)
<=> \(\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)=x^{16}-1\)
<=> \(\left(x^8-1\right)\left(x^8+1\right)=x^{16}-1\)
<=> \(x^{16}-1=x^{16}-1\)đúng với mọi x khác 1
=> (1) đúng với mọi x khác 1
Từ 2 trường hợp trên => (1) đúng với mọi x
Vậy với mọi x ta có: \(\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)=1+x+x^2+...+x^{15}\)
a) x5 + x +1
=x5-x4+x4-x3+x3-x2+x2+x+1
=(x5+x4+x3)-(x4+x3+x2)+(x2+x+1)
=x3(x2+x+1)-x2(x2+x+1)+(x2+x+1)
=(x2+x+1)(x3-x2+1)
b,c,d làm tương tự câu a
nhớ tích cho mình với nhé
a) \(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\)
\(\Leftrightarrow x^3+9x+2=x^3+8\)
\(\Leftrightarrow x^3+9x=x^3+8-2\)
\(\Leftrightarrow x^3+9x=x^3+6\)
\(\Leftrightarrow x^3+9x=x^3+6x-x^3\)
\(\Leftrightarrow\frac{2}{3}\)
b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow x^2-4=8x-16\)
\(\Leftrightarrow x^4-4=8x-16+16\)
\(\Leftrightarrow x^2+12=8x\)
\(\Leftrightarrow x^2+12=8x-8x\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24
= (x+2)(x+5)(x+3)(x+4)-24
= (x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+11 = a thay vào A ta được :
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2)
Thế a vào (2) ta được :
A=(x^2+7x+11-5)(x^2+7x+11+5)
= (x^2+7x+6)(x^2+7x+16)
b) = (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
d) 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)
Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1 nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)
Vậy 2x4 - 3x3 - 7x2 + 6x + 8 = (x-2)(x+1)(2x2-x-4)
a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)
\(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)
\(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)
\(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)
\(=\left(x^2+x-1\right)^2-1=24\)
\(=\left(x^2+x-1\right)^2=25\)
xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé
\(\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)
\(=\left(x^4-x^2+1\right)[\left(x^2+1\right)^2-x^2]\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x^2\right)\left(x^2+1+x^2\right)\)
\(=\left(x^4-x^2+1\right)\cdot2x^2\)