K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4+1\right)^2-x^4\)

\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)

\(=\left(x^4-x^2+1\right)[\left(x^2+1\right)^2-x^2]\)

\(=\left(x^4-x^2+1\right)\left(x^2+1-x^2\right)\left(x^2+1+x^2\right)\)

\(=\left(x^4-x^2+1\right)\cdot2x^2\)

21 tháng 7 2016

ai giúp tôi với

16 tháng 12 2019

  \(\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)=1+x+x^2+...+x^{15}\)(1)

+) Với x = 1

Ta có: \(16=16\)đúng

=> (1) đúng với x = 1

+) Với x khác 1. Nhân cả hai vế của phương trình với x --1

Ta có: 

pt <=> \(\left(x-1\right)\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)=\left(1+x+x^2+...+x^{15}\right)\left(x-1\right)\)

<=> \(\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)=x^{16}-1\)

<=> \(\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)=x^{16}-1\)

<=> \(\left(x^8-1\right)\left(x^8+1\right)=x^{16}-1\)

<=> \(x^{16}-1=x^{16}-1\)đúng với mọi x khác 1

=> (1) đúng với mọi x khác 1

Từ 2 trường hợp trên => (1) đúng với mọi x

Vậy với mọi x ta có: \(\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)=1+x+x^2+...+x^{15}\)

3 tháng 8 2019

Có : 

b) (x - 8)(x + 8) = (x - 4)(x2 + 4x + 16)

  x2 - 82 = x3 - 43

x2 - 2^6 - x3 + 2 = 0

x2 . ( x - 1 ) = 0

x = 0 hoặc x-1 = 0

x= 0 hoặc x = 1

 Vâỵ....

29 tháng 10 2015

a) x5 + x +1

=x5-x4+x4-x3+x3-x2+x2+x+1

=(x5+x4+x3)-(x4+x3+x2)+(x2+x+1)

=x3(x2+x+1)-x2(x2+x+1)+(x2+x+1)

=(x2+x+1)(x3-x2+1)

b,c,d làm tương tự câu a

nhớ tích cho mình với nhé

29 tháng 10 2015

a, x( x4 + 1 + 1 ) 

= x5 + 2 

chắc z ! 

18 tháng 8 2018

a) \(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\)

\(\Leftrightarrow x^3+9x+2=x^3+8\)

\(\Leftrightarrow x^3+9x=x^3+8-2\)

\(\Leftrightarrow x^3+9x=x^3+6\)

\(\Leftrightarrow x^3+9x=x^3+6x-x^3\)

\(\Leftrightarrow\frac{2}{3}\)

b) \(x^2-4=8\left(x-2\right)\)

\(\Leftrightarrow x^2-4=8x-16\)

\(\Leftrightarrow x^4-4=8x-16+16\)

\(\Leftrightarrow x^2+12=8x\)

\(\Leftrightarrow x^2+12=8x-8x\)

\(\Leftrightarrow x^2-8x+12=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)

12 tháng 7 2016

Bạn k biết làm câu nào

4 tháng 9 2017

a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24 
= (x+2)(x+5)(x+3)(x+4)-24 
= (x^2+7x+10)(x^2+7x+12)-24 
Đặt x^2+7x+11 = a thay vào A ta được : 
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2) 
Thế a vào (2) ta được : 
A=(x^2+7x+11-5)(x^2+7x+11+5) 
= (x^2+7x+6)(x^2+7x+16) 

b)  = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

   d)  2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)

Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1  nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)

Vậy 2x4 - 3x3 - 7x2 + 6x + 8  = (x-2)(x+1)(2x2-x-4)

4 tháng 9 2017

  a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

 \(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)

 \(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)

 \(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)

 \(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)

 \(=\left(x^2+x-1\right)^2-1=24\)

 \(=\left(x^2+x-1\right)^2=25\)

   xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé