Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\dfrac{2}{7}\)
\(\sqrt{5x^2-5x+3}-\left(x+1\right)+2x-\sqrt{7x-2}+4x^2-7x+2=0\)
\(\Leftrightarrow\dfrac{4x^2-7x+2}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{4x^2-7x+2}{2x+\sqrt{7x-2}}+4x^2-7x+2=0\)
\(\Leftrightarrow\left(4x^2-7x+2\right)\left(\dfrac{1}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{1}{2x+\sqrt{7x-2}}+1\right)=0\)
Ta có \(\dfrac{1}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{1}{2x+\sqrt{7x-2}}+1>0\)
\(\Rightarrow4x^2-7x+2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7-\sqrt{17}}{8}\\x=\dfrac{7+\sqrt{17}}{8}\end{matrix}\right.\)
\(\)
\(1\))\(x^2+5x+8=3\sqrt{x^3+5x^2+7x+6}\left(1\right)\\ĐK:x\ge-\dfrac{3}{2} \\ \left(1\right)\Leftrightarrow x^2+5x+8=3\sqrt{\left(2x+3\right)\left(x^2+x+2\right)}\left(2\right)\)
Đặt \(b=\sqrt{2x+3};a=\sqrt{x^2+x+2}\)
\(\left(2\right)\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)\(\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1\pm\sqrt{5}}{2}\\x=\dfrac{7\pm\sqrt{89}}{2}\end{matrix}\right.\)
4)\(ĐK:x\ge-\dfrac{1}{3}\)
\(x^2-7x+2+2\sqrt{3x+1}=0\\ \Leftrightarrow x^2-7x+6+2\sqrt{3x+1}-4=0\\ \Leftrightarrow\left(x-1\right)\left(x-6\right)+\dfrac{12\left(x-1\right)}{2\sqrt{3x+1}+4}=0\\ \Leftrightarrow\left(x-1\right)\left(x-6+\dfrac{12}{2\sqrt{3x+1}+4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x-6+\dfrac{12}{2\sqrt{3x+1}+4}=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(x-5\right)+\dfrac{6}{\sqrt{3x+1}+2}-1=0\\ \Leftrightarrow\left(x-5\right)+\dfrac{4-\sqrt{3x+1}}{\sqrt{3x+1}+2}=0\\ \Leftrightarrow\left(x-5\right)-\dfrac{3\left(x-5\right)}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}=0\\ \Leftrightarrow\left(x-5\right)\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)=3\\ \Leftrightarrow3x+1+6\sqrt{3x+1}+8=3\\ \Leftrightarrow x+2\sqrt{3x+1}+2=0\\ \Leftrightarrow2\sqrt{3x+1}=-x-2\ge0\Leftrightarrow x\le-2\)
Vậy pt có 2 nghiệm là x=1 và x=5
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
e/
ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow x^2+8x-2+6\sqrt{x\left(x+1\right)\left(x-2\right)}\le5x^2-4x-6\)
\(\Leftrightarrow3\sqrt{x\left(x+1\right)\left(x-2\right)}\le2x^2-6x-2\)
\(\Leftrightarrow3\sqrt{\left(x^2-2x\right)\left(x+1\right)}\le2x^2-6x-2\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x}=a\ge0\\\sqrt{x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2-2b^2=2x^2-6x-2\)
BPT trở thành:
\(3ab\le2a^2-2b^2\Leftrightarrow2a^2-3ab-2b^2\ge0\)
\(\Leftrightarrow\left(2a+b\right)\left(a-2b\right)\ge0\)
\(\Leftrightarrow a\ge2b\Rightarrow\sqrt{x^2-2x}\ge2\sqrt{x+1}\)
\(\Leftrightarrow x^2-2x\ge4x+4\)
\(\Leftrightarrow x^2-6x-4\ge0\)
\(\Rightarrow x\ge3+\sqrt{13}\)
d/
ĐKXĐ: \(x\ge-1\)
\(3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+4x^2-5x+3\ge0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow4a^2-b^2=4x^2-5x+3\)
BPT trở thành:
\(4a^2+3ab-b^2\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(4a-b\right)\ge0\)
\(\Leftrightarrow4a-b\ge0\Rightarrow4a\ge b\)
\(\Rightarrow4\sqrt{x^2+x+1}\ge\sqrt{x+1}\)
\(\Leftrightarrow16x^2+16x+4\ge x+1\)
\(\Leftrightarrow16x^2+15x+3\ge0\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le\frac{-15-\sqrt{33}}{32}\\x\ge\frac{-15+\sqrt{33}}{32}\end{matrix}\right.\)
đặt \(\hept{\begin{cases}\sqrt[3]{3x-2}=a\\\sqrt{6-5x}=b\ge0\end{cases}}\) ta sẽ có hệ sau \(\hept{\begin{cases}3a+4b=10\\5a^3+3b^2=8\end{cases}}\)
rút thế \(b=\frac{10-3a}{4}\)xuống phương trình dưới ta có\
\(5a^3+3\left(\frac{10-3a}{4}\right)^2=8\) hay
\(80a^3+27a^2-180a+172=0\Leftrightarrow\left(a+2\right)\left(80a^2-133a+86\right)=0\Leftrightarrow a=-2\)
hay \(\sqrt[3]{3x-2}=-2\Leftrightarrow x=-2\) thay lại thỏa mãn
vậy phương trình có nghiệm duy nhất x=-2
a/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+5x+2}=2\sqrt{2x^2+5x-6}\)
\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)\)
\(\Leftrightarrow6x^2+15x-26=0\)
b/ ĐKXĐ: ...
Đặt \(\sqrt[5]{\frac{16x}{x-1}}=a\)
\(a+\frac{1}{a}=\frac{5}{2}\Leftrightarrow a^2-\frac{5}{2}a+1=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[5]{\frac{16x}{x-1}}=2\\\sqrt[5]{\frac{16x}{x-1}}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}16x=32\left(x-1\right)\\16x=\frac{1}{32}\left(x-1\right)\end{matrix}\right.\)
c/ĐKXĐ: ...
\(\Leftrightarrow x^2-2x-\sqrt{6x^2-12x+7}=0\)
Đặt \(\sqrt{6x^2-12x+7}=a\ge0\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
\(\frac{a^2-7}{6}-a=0\Leftrightarrow a^2-6a-7=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=7\end{matrix}\right.\) \(\Rightarrow\sqrt{6x^2-12x+7}=7\)
\(\Leftrightarrow6x^2-12x-42=0\)
d/ \(\Leftrightarrow x^2+x+4-\sqrt{x^2+x+4}-2=0\)
Đặt \(\sqrt{x^2+x+4}=a>0\)
\(a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+x+4}=2\Rightarrow x^2+x=0\)
e/ \(\Leftrightarrow x^2+2x+\sqrt{3x^2+6x+4}-2=0\)
Đặt \(\sqrt{3x^2+6x+4}=a>0\Rightarrow x^2+2x=\frac{a^2-4}{3}\)
\(\frac{a^2-4}{3}+a-2=0\)
\(\Leftrightarrow a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2+6x+4}=2\Rightarrow3x^2+6x=0\)
Mệt r` kiếm bài dễ dễ làm trc v mai tính sau
ĐK:...
\(\frac{x-7}{3}=\sqrt{5x-1}-\sqrt{3x+13}=\frac{2\left(x-7\right)}{\sqrt{5x-1}+\sqrt{3x+13}}\)
*)x=7
*)\(\sqrt{3x+13}+\sqrt{5x-1}=6\)=>...
1) ĐK: \(x\ge\frac{3}{2}\)
pt \(\Leftrightarrow\frac{2x-2-\left(6x-9\right)}{\sqrt{2x-2}+\sqrt{6x-9}}=16x^2-28x-20x+35\)
\(\Leftrightarrow\frac{-4x+7}{\sqrt{2x-2}+\sqrt{6x-9}}=4x\left(4x-7\right)-5\left(4x-7\right)\)
\(\Leftrightarrow-\frac{4x-7}{\sqrt{2x-2}+\sqrt{6x-9}}=\left(4x-7\right)\left(4x-5\right)\)
\(\Leftrightarrow\left(4x-7\right)\left(\frac{1}{\sqrt{2x-2}+\sqrt{6x-9}}+4x-5\right)=0\)
\(\Leftrightarrow4x-7=0\Leftrightarrow x=\frac{7}{4}\) (nhận)
2) ĐK: \(2\le x\le4\)
pt \(\Leftrightarrow\sqrt{x-2}+\sqrt{a-x}=2\left(x^2-6x+9\right)+7x-19\)
\(\Leftrightarrow\sqrt{x-2}-\left(7x-20\right)+\sqrt{4-x}-1=2\left(x-3\right)^2\)
\(\Leftrightarrow\frac{x-2-\left(7x-20\right)^2}{\sqrt{x-2}+7x-20}+\frac{4-x-1}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(134-49x\right)}{\sqrt{x-2}+\left(7x-20\right)}+\frac{3-x}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\) (nhận)
`sqrt{5x+3}+sqrt{10x-1}+5x^2-6x-2=0`
`đk:x>=1/10`
`pt<=>sqrt{5x+3}-2+sqrt{10x-1}-1+5x^2-6x+1=0`
`<=>(5x-1)/(sqrt{5x+3}+2)+(10x-2)/(sqrt{10x-1}+1)+(5x-1)(x-1)=0`
`<=>(5x-1)(1/(sqrt{5x+3}+2)+2/(sqrt{10x-1}+1)+x-1)=0`
`<=>5x-1=0`
`<=>x=1/5`
Sao để cm x-1 >0 vậy bạn !??