
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Em mới vừa nghĩ ra cách khác )):
\(VT=\frac{a^2+b^2}{a^2b^2}+\frac{4}{a^2-2ab+b^2}=a^2+b^2+\frac{4}{a^2+b^2-2}\)
\(=a^2+b^2-2+\frac{4}{a^2+b^2-2}+2\)
\(\ge2\sqrt{\left(a^2+b^2-2\right).\frac{4}{a^2+b^2-2}}+2=6\)

t nghĩ ngoài SOS ra thì không còn lời giải sơ cấp nào khác, nếu Max = 1, không có Wolfram Alpha cũng không chắc lắm.
Thử pqr xem nào:
\(P=\frac{ab^2+bc^2+ca^2+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+6}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{\frac{1}{2}\left(a-b\right)\left(b-c\right)\left(c-a\right)+\frac{1}{2}\Sigma ab\left(a+b\right)+4\left(a+b+c\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(\le\frac{\frac{1}{2}\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}+\frac{1}{2}\Sigma ab\left(a+b\right)+4\left(a+b+c\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{\frac{1}{2}\sqrt{-4p^3r+p^2q^2+18pqr-4q^3-27r^2}+\frac{1}{2}\left(pq-3r\right)+4p}{r+2q+4p+8}\le1\)
Có: \(p^2-2q=3\therefore q=\frac{\left(p^2-3\right)}{2}\). Từ đó quy bài toán về chứng minh:
\(\frac{5}{2}r+\frac{\left(14-3p\right)\left(3p+1\right)^2}{108}+\frac{263}{54}\ge\frac{1}{2}\sqrt{-4p^3r+p^2q^2+18pqr-4q^3-27r^2}\)
Vì \(0< p=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\) nên cả 2 vế đều không âm.
Lúc này bất đẳng thức tương đương:
(Đoạn này gõ Latex, không hiên thì vào thống kê hỏi đáp nhá)
\(\Leftrightarrow f\left(r\right)\ge0\). Mặt khác \(f'\left(r\right)=26r+\frac{\left(-15p+10+2\sqrt{415}\right)\left(15p-10+\sqrt{415}\right)^2}{1350}+\frac{904}{27}-\frac{83\sqrt{415}}{135}>0\)
Nên khi r giảm thi f giảm. Mặt khác do \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\ge0\)
Nên \(r\ge\frac{1}{27}\left(-2p^3-2\sqrt{\left(p^2-3q\right)^3}+9pq\right)=\frac{1}{27}\left(-2p^3-2\sqrt{\left\{\frac{\left(9-p^2\right)}{2}\right\}^3}+\frac{9p\left(p^2-3\right)}{2}\right)\)
Vì vậy \(f\left(r\right)\ge f\left(\frac{1}{27}\left(-2p^3-2\sqrt{\left\{\frac{\left(9-p^2\right)}{2}\right\}^3}+\frac{9p\left(p^2-3\right)}{2}\right)\right)\ge0\)
Bác Cool Kid chứng minh BĐT 1 biến ở cuối thử xem:v


ta có pt
<=>\(9x^2-6x+1=y^3+1\Leftrightarrow\left(3x-1\right)^2=\left(y+1\right)\left(y^2-y+1\right)\)
=>\(\left(y-1\right)\left(y^2-y+1\right)\) là số chính phương
gọi d là ước chung lớn nhất của \(y-1;y^2-y+1\Rightarrow\hept{\begin{cases}y^2+2y+1⋮d\\y^2-y+1⋮d\end{cases}\Rightarrow3y⋮d}\)
vì d là ước của ...=>\\(\left(y+1\right)\left(y^2-y+1\right)⋮d^2\Rightarrow\left(3x-1\right)^2⋮d^2\Rightarrow3x-1⋮d\)
=> 3x không chia hết cho d=> 3 không chia hết cho d=> y chia hết cho d => 1 chia hết cho d => d=1
=> \(y+1;y^2-y+1\) là 2 số nguyên tố cùng nhău
mà tích của chúng là số chính phương => y=-1 hoặc cả 2 số đề là số chính phương
bạn tự xét y=-1 và tự giải
bạn xét cả 2 số đều là số chính phương
=>\(y^2-y+1=a^2\Leftrightarrow4y^2-4y+4=4a^2\Leftrightarrow\left(2y-1\right)^2-4a^2=-3\Leftrightarrow\left(2y-1-2a\right)\left(2y-1+2a\right)=-3\)
đến đây là pt tích, bạn tự giải nhé

Ta thấy hàm số này chỉ có cực đại. Và bị chặn 2 đầu. Vậy đầu chặn nào bé hơn chính là min
Vì 4 - 2x2 \(\ge0\)
\(-\sqrt{2}\le x\le\sqrt{2}\)
Tại x = \(\sqrt{2}\) thì hàm số = \(2\sqrt{2}\)
Tại x = -\(\sqrt{2}\) thì hàm số = - \(2\sqrt{2}\)
Vậy min là - \(2\sqrt{2}\)tại x = - \(\sqrt{2}\)
giúp gì
tick mik nhé