K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

Em mới vừa nghĩ ra cách khác )):

\(VT=\frac{a^2+b^2}{a^2b^2}+\frac{4}{a^2-2ab+b^2}=a^2+b^2+\frac{4}{a^2+b^2-2}\)

\(=a^2+b^2-2+\frac{4}{a^2+b^2-2}+2\)

\(\ge2\sqrt{\left(a^2+b^2-2\right).\frac{4}{a^2+b^2-2}}+2=6\)

26 tháng 4 2020

Bài này sai đề nhé! Thử: \(\left(a;b\right)=\left(\frac{\sqrt{5}-1}{2},\frac{2}{\sqrt{5}-1}\right)\rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}=4< 6\)

Và 4 cũng là min biểu thức trên!

3 tháng 5 2020

t nghĩ ngoài SOS ra thì không còn lời giải sơ cấp nào khác, nếu Max = 1, không có Wolfram Alpha cũng không chắc lắm.

 Thử pqr xem nào:

\(P=\frac{ab^2+bc^2+ca^2+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+6}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\frac{1}{2}\left(a-b\right)\left(b-c\right)\left(c-a\right)+\frac{1}{2}\Sigma ab\left(a+b\right)+4\left(a+b+c\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(\le\frac{\frac{1}{2}\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}+\frac{1}{2}\Sigma ab\left(a+b\right)+4\left(a+b+c\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\frac{1}{2}\sqrt{-4p^3r+p^2q^2+18pqr-4q^3-27r^2}+\frac{1}{2}\left(pq-3r\right)+4p}{r+2q+4p+8}\le1\)

Có: \(p^2-2q=3\therefore q=\frac{\left(p^2-3\right)}{2}\). Từ đó quy bài toán về chứng minh:

\(\frac{5}{2}r+\frac{\left(14-3p\right)\left(3p+1\right)^2}{108}+\frac{263}{54}\ge\frac{1}{2}\sqrt{-4p^3r+p^2q^2+18pqr-4q^3-27r^2}\)

Vì \(0< p=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\) nên cả 2 vế đều không âm.

Lúc này bất đẳng thức tương đương: 

$${\frac{173}{8}}+15/2\,p+25\,r+{\frac {107\,{p}^{2}}{8}}+13\,{r}^{2}+5 \,r{p}^{2}-5/2\,r{p}^{3}+21/2\,rp-{p}^{3}-1/8\,{p}^{4}-1/2\,{p}^{5}+1/ 8\,{p}^{6} \geqq 0$$

(Đoạn này gõ Latex, không hiên thì vào thống kê hỏi đáp nhá)

\(\Leftrightarrow f\left(r\right)\ge0\). Mặt khác \(f'\left(r\right)=26r+\frac{\left(-15p+10+2\sqrt{415}\right)\left(15p-10+\sqrt{415}\right)^2}{1350}+\frac{904}{27}-\frac{83\sqrt{415}}{135}>0\)

Nên khi r giảm thi f giảm. Mặt khác do \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\ge0\)

Nên \(r\ge\frac{1}{27}\left(-2p^3-2\sqrt{\left(p^2-3q\right)^3}+9pq\right)=\frac{1}{27}\left(-2p^3-2\sqrt{\left\{\frac{\left(9-p^2\right)}{2}\right\}^3}+\frac{9p\left(p^2-3\right)}{2}\right)\)

Vì vậy \(f\left(r\right)\ge f\left(\frac{1}{27}\left(-2p^3-2\sqrt{\left\{\frac{\left(9-p^2\right)}{2}\right\}^3}+\frac{9p\left(p^2-3\right)}{2}\right)\right)\ge0\)

Bác Cool Kid chứng minh BĐT 1 biến ở cuối thử xem:v

3 tháng 5 2020

Chết, cách kia sai rồi, đánh thiếu số 6 hèn gì không ra -_-

21 tháng 9 2017

ai giups minh voi

29 tháng 12 2017

ta có pt 

<=>\(9x^2-6x+1=y^3+1\Leftrightarrow\left(3x-1\right)^2=\left(y+1\right)\left(y^2-y+1\right)\)

=>\(\left(y-1\right)\left(y^2-y+1\right)\)  là số chính phương 

gọi d là ước chung lớn nhất của \(y-1;y^2-y+1\Rightarrow\hept{\begin{cases}y^2+2y+1⋮d\\y^2-y+1⋮d\end{cases}\Rightarrow3y⋮d}\)

vì d là ước của ...=>\\(\left(y+1\right)\left(y^2-y+1\right)⋮d^2\Rightarrow\left(3x-1\right)^2⋮d^2\Rightarrow3x-1⋮d\)

=> 3x không chia hết cho d=> 3 không chia hết cho d=> y chia hết cho d => 1 chia hết cho d => d=1 

=> \(y+1;y^2-y+1\) là 2 số nguyên tố cùng nhău

mà tích của chúng là số chính phương => y=-1 hoặc cả 2 số đề là số chính phương 

bạn tự xét y=-1 và tự giải

bạn xét cả 2 số đều là số chính phương 

=>\(y^2-y+1=a^2\Leftrightarrow4y^2-4y+4=4a^2\Leftrightarrow\left(2y-1\right)^2-4a^2=-3\Leftrightarrow\left(2y-1-2a\right)\left(2y-1+2a\right)=-3\)

đến đây là pt tích, bạn tự giải nhé

30 tháng 9 2016

Ta thấy hàm số này chỉ có cực đại. Và bị chặn 2 đầu. Vậy đầu chặn nào bé hơn chính là min

Vì 4 - 2x2 \(\ge0\)

\(-\sqrt{2}\le x\le\sqrt{2}\)

Tại x = \(\sqrt{2}\) thì hàm số = \(2\sqrt{2}\)

Tại x = -\(\sqrt{2}\) thì hàm số = - \(2\sqrt{2}\)

Vậy min là - \(2\sqrt{2}\)tại x = - \(\sqrt{2}\)