Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2 :
\(\frac{4343}{7777}\)= \(\frac{43.101}{77.101}\)=\(\frac{43}{77}\), 434343/777777= 43.10101/77.10101=43/77
\(M=\frac{10^{2018}+1}{10^{2019}+1}\)
\(\Rightarrow10M=\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+1+9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)
\(N=\frac{10^{2019}+1}{10^{2020}+1}\)
\(\Rightarrow10N=\frac{10\left(10^{2019}+1\right)}{10^{2020}+1}=\frac{10^{2020}+1+9}{10^{2020}+1}=1+\frac{9}{10^{2020}+1}\)
Ta co: \(\frac{9}{10^{2019}+1}>\frac{9}{10^{2020}+1}\) ma \(1=1\)
\(\Rightarrow1+\frac{9}{10^{2019}+1}>1+\frac{9}{10^{2020}+1}\)
\(\Rightarrow10M>10N\)
\(\Rightarrow M>N\)
1/ So sánh A với \(\frac{1}{4}\)
Có \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.........+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-.......+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{1}{2}-\frac{1}{2015.2016}\)
Vậy \(A>\frac{1}{4}\)
m>n