![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
4x2 + 6x - 6
\(\Delta=b^2-4ac=6^2-4\cdot4\cdot\left(-6\right)=36+96=132\)
\(\Delta>0\)nên phương trình đã cho có hai nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-6+\sqrt{132}}{2\cdot4}=\frac{-3+\sqrt{33}}{4}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-6-\sqrt{132}}{2\cdot4}=\frac{-3-\sqrt{33}}{4}\)
Vậy \(S=\left\{\frac{-3+\sqrt{33}}{4};\frac{-3-\sqrt{33}}{4}\right\}\)
\(4x^2+6x-6=0\)
\(\Delta=36-4.\left(-6\right).4=36+96=132\)
\(< =>\orbr{\begin{cases}x_1=\frac{-6+\sqrt{132}}{8}\\x_2=\frac{-6-\sqrt{132}}{8}\end{cases}}\)
Vậy
![](https://rs.olm.vn/images/avt/0.png?1311)
sin^2 17 do + sin^2 24 do + sin^2 73 do +sin^2 66 do
=(sin^2 17 do +sin^2 73 do) + (sin^2 24 do+ sin^2 66 do)
=(sin^2 17 do +cos^2 17 do) + (sin^2 24 do +cos^2 24 do)
=1+1=2
![](https://rs.olm.vn/images/avt/0.png?1311)
Đây nè :
y=x^3+3x^2+1=(x+1)^3-3x <=>
y-3=(x+1)^3-3x-3 hay
y-3 = (x+1)^3 - 3(x+1) (*)
Nhìn vào (*) ta thấy rằng nếu chọn hệ trục tọa độ mới IXY với gốc tọa độ tại I(-1;3)
Khi đó X=x+1, Y=y-3 và hàm số trở thành Y=X^3 - 3X là hàm lẻ, đồ thị của nó (cũng chính là đồ thị hàm đã cho trong hệ tọa độ cũ) nhận I là tâm đối xứng.
Vậy tâm đối xứng của đồ thị hs đã cho là I(-1;3)
Nếu bạn đã học khảo sát hàm số bằng đạo hàm thì có cách này đơn giản hơn nhiều :
y'=3x^2+6x (nghiệm của y'=0 là hoành độ các cực trị, nhưng ta không quan tâm)
y''=6x+6 (nghiệm của y''=0 chính là hoành độ điểm uốn, cũng là tâm đối xứng)
y''=6x+6=0=>x= -1=>y=3
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(đkcđ\Leftrightarrow x\ge0\)
\(B=\frac{x+5}{\sqrt{x}+2}=\frac{x-4+9}{\sqrt{x}+2}=\frac{x-4}{\sqrt{x}+2}+\frac{9}{\sqrt{x}+2}.\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{9}{\sqrt{x}+2}=\sqrt{x}-2+\frac{9}{\sqrt{x}+2}\)
\(=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\)
Áp dụng bđt Cô - si cho hai số dương \(\sqrt{x}+2\)và \(\frac{9}{\sqrt{x}+2}\), ta có :
\(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge2\sqrt{\frac{\left(\sqrt{x}+2\right).9}{\sqrt{x}+2}}\)
\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge2.3\)
\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\ge6-4\)
\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\ge2\)
Hay \(B_{min}=2\)\(\Leftrightarrow\sqrt{x}+2=\frac{9}{\sqrt{x}+2}\)
\(\Rightarrow\sqrt{x}+2-\frac{9}{\sqrt{x}+2}=0\)
\(\Rightarrow\frac{\left(\sqrt{x}+2\right)^2-9}{\sqrt{x}+2}=0\)
\(\Rightarrow\left(\sqrt{x}+2\right)^2-3^2=0\)
\(\Rightarrow\left(\sqrt{x}+2-3\right)\left(\sqrt{x}+2+3\right)=0\)
\(\Rightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)=0\)
Vì \(\sqrt{x}+5>0\Rightarrow\sqrt{x}-1=0\)
\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
\(KL:B_{min}=2\Leftrightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, sinC = \(\frac{AB}{BC}\); tanC = \(\frac{AB}{AC}\)
cosC = \(\frac{AC}{BC}\); cotC = \(\frac{AC}{AB}\)
b, Xét tam giác ABC vuông tại A, đường cao AH
tanB = \(\frac{AC}{AB}=\sqrt{2}\Rightarrow AC=\sqrt{2}AB\)
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{12}=\frac{1}{AB^2}+\frac{1}{2AB^2}\Rightarrow AB\approx4,24\)cm
\(\Rightarrow AC\approx4,24\sqrt{2}\)cm
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}\approx\sqrt{4,24^2+\left(4,24\sqrt{2}\right)^2}\approx7,34\)cm