Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
b) \(4x^2-12x-y^2+2y+8\) (đã sửa đề)
\(=4\left(x^2-3x+\frac{9}{4}\right)-\left(y^2-2y+1\right)\)
\(=\left[2\left(x-\frac{3}{2}\right)\right]^2-\left(y-1\right)^2\)
c) \(z^2-6z+5-t^2-4t\)
\(=\left(z^2-6z+9\right)-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
\(B=-3x^2-12x-8=-3\left(x^2+4x+4\right)+4=-3\left(x+2\right)^2+4\le4\)
Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).
\(x^3-3x+1=\frac{1}{2}x^2\left(2x-1\right)+\frac{1}{4}x\left(2x-1\right)-\frac{11}{8}\left(2x-1\right)-\frac{3}{8}\)
\(=\left(2x-1\right)\left(\frac{1}{2}x^2+\frac{1}{4}x-\frac{11}{8}\right)-\frac{3}{8}\)
a) \(\dfrac{3}{4}+\dfrac{9}{5}\div\dfrac{3}{2}-1=\dfrac{3}{4}+\dfrac{18}{15}-1=\dfrac{39}{20}-1=\dfrac{19}{20}\)
b) \(\dfrac{6}{7}\cdot\dfrac{8}{13}+\dfrac{6}{13}\cdot\dfrac{9}{7}-\dfrac{4}{13}\cdot\dfrac{6}{7}=\dfrac{48}{91}+\dfrac{54}{91}-\dfrac{24}{91}=\dfrac{48+51-24}{91}=\dfrac{78}{91}=\dfrac{6}{7}\)
c) \(\dfrac{-3}{7}+\left(\dfrac{3}{-7}-\dfrac{3}{-5}\right)\)\(=\dfrac{-3}{7}+\left(\dfrac{-3}{7}-\dfrac{-3}{5}\right)=\dfrac{-3}{7}+\dfrac{6}{35}=-\dfrac{9}{35}\)
Bài khó quá
4x⁴+4x-3= (2x)²+2(2x)+1-4
=(2x+1)²-2²=(2x+1-2)(2x+1+2)
=(2x-1)(2x+3)
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật