\(\frac{4}{1.5}+\frac{4}{5.9}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

\(S=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+..+\frac{2005-2001}{2001.2005}\)

\(=\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{13}\right)+...+\left(\frac{1}{2001}-\frac{1}{2005}\right)\)

\(=1+\left(-\frac{1}{5}+\frac{1}{5}\right)+\left(-\frac{1}{9}+\frac{1}{9}\right)+...+\left(-\frac{1}{2001}+\frac{1}{2001}\right)-\frac{1}{2005}\)

\(=1-\frac{1}{2005}\)

\(=\frac{2004}{2005}\)

16 tháng 3 2019

a) \(x+\)\(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)

\(\Rightarrow x+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{-37}{45}\)

\(\Rightarrow x+\frac{1}{5}-\frac{1}{45}=\frac{-37}{45}\)

\(\Rightarrow x+\frac{1}{5}=-\frac{4}{5}\)

\(\Rightarrow x=\frac{-3}{5}\)

b) Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2003.2005}\)

\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(\Rightarrow2A=1-\frac{1}{2005}\)

\(\Rightarrow2A=\frac{2004}{2005}\)

\(\Rightarrow A=\frac{1002}{2005}\)

16 tháng 3 2019

Tính tổng:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\) 

\(\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003+2005}\right)\)  

\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{2003}-\frac{1}{2005}\right)\) 

\(\frac{1}{2}\left(1-\frac{1}{2005}\right)\)

\(\frac{1}{2}\cdot\frac{2004}{2005}\)  

\(\frac{1002}{2005}\) 

k nha

2 tháng 4 2018

a, \(\frac{1}{2}.B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

      \(\frac{1}{2}.B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

         \(\frac{1}{2}.B=1-\frac{1}{101}=\frac{100}{101}\)

                  \(B=\frac{100}{101}.2=\frac{200}{101}\)

b, \(\frac{4}{5}.C=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{101.105}\)

      \(\frac{4}{5}.C=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)

          \(\frac{4}{5}.C=1-\frac{1}{105}=\frac{104}{105}\)

                 \(C=\frac{104}{105}.\frac{5}{4}=\frac{26}{21}\)

2 tháng 4 2018

\(B=\frac{2}{2}\cdot\left(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+....+\frac{4}{99\cdot101}\right)\)

\(=\frac{4}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\)

\(=2\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=2\cdot\left(1-\frac{1}{101}\right)\)

\(=2\cdot\frac{100}{101}\)

\(=1\frac{99}{101}\)

22 tháng 7 2015

Chỉ cần để các thừa số ra ngoài rồi nhân các số mà bằng khoảng cách của mẫu lên tử là giải được

3 tháng 4 2017

tôi biết câu này nè

9 tháng 4 2018

=1/5-1/205

=8/41

Nhớ chích đúng cho mình nha!

9 tháng 4 2018

À ,  làm chi tiết hộ mk

7 tháng 8 2017

Ta có:

\(\frac{1}{20.21}+\frac{1}{21.22}+\frac{1}{22.23}+...+\frac{1}{60.61}\)

\(=\frac{1}{20}-\frac{1}{21}+\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+...+\frac{1}{60}-\frac{1}{61}\)

\(=\frac{1}{2}-\frac{1}{61}=\frac{59}{122}\)

b) \(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{45.49}\)

\(=\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{45.49}\)

\(=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{45}-\frac{1}{49}\)

\(=\frac{1}{5}-\frac{1}{49}=\frac{44}{245}\)

7 tháng 8 2017

Bn Tấn sai rùi

phần a , câu cuối là \(\frac{1}{20}\)chứ đâu phải \(\frac{1}{2}\)

21 tháng 7 2018

\(4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{x.\left(x+4\right)}\)

\(4A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+4}\) 

\(4A=1-\frac{1}{x+4}\) 

\(4A=\frac{x+4-1}{x+4}\)   

\(A=\frac{x+3}{\text{4(x+4)}}\)

Bạn tự thay rồi tính nhé 

21 tháng 7 2018

\(A=\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+........+\frac{1}{x\cdot\left(x+4\right)}\)

\(4A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+........+\frac{4}{x\cdot\left(x+4\right)}\)

\(4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.......+\frac{1}{x}-\frac{1}{x+4}\)

\(4A=1-\frac{1}{x+4}\)

\(A=\left(1-\frac{1}{x+4}\right):4\)

Khi x = 12 => \(A=\left(1-\frac{1}{12+4}\right):4\)

A = \(\left(1-\frac{1}{16}:4\right)\)

A = \(\frac{15}{16}:4=\frac{15}{64}\)

Khi x = 2 => \(A=\left(1-\frac{1}{2+4}\right):4\)

A = \(\left(1-\frac{1}{6}\right):4\)

\(=\frac{5}{6}:4=\frac{5}{24}\)

Khi x = \(\frac{5}{6}\)=> \(A=\left(1-\frac{1}{\frac{5}{6}+4}\right):4\)

A = \(\left(1-\frac{1}{\frac{29}{6}}\right):4\)

A = \(\frac{23}{29}:4=\frac{23}{116}\)

17 tháng 3 2021

Ta có : \(\frac{7}{x-2005}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x-2005}=\frac{29}{45}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)\)

\(\Rightarrow\frac{7}{x-2005}=\frac{29}{45}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\)

\(\Rightarrow\frac{7}{x-2005}=\frac{29}{45}-\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}-\frac{8}{45}=\frac{7}{15}\)

\(\Rightarrow x-2005=15\Rightarrow x=15+2005=2020\)

Vậy x =2020

17 tháng 3 2021

sry =29/45 nha

26 tháng 4 2017

\(x+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=1\)

\(x+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=1\)

\(x+\frac{1}{5}-\frac{1}{45}=1\)

\(x+\frac{8}{45}=1\)

\(\Rightarrow x=1-\frac{8}{45}\)

\(\Rightarrow x=\frac{37}{45}\)

26 tháng 4 2017

\(x+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=1\)

\(x+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=1\)

\(x+\left[4\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{41.45}\right)\right]=1\)

\(x+\left[4.\frac{1}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\right]=1\)

\(x+\left[1\left(\frac{1}{5}-\frac{1}{45}\right)\right]=1\)

\(x+\frac{8}{45}=1\)

\(x=1-\frac{8}{45}\)

\(x=\frac{37}{45}\)