loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

ABCD là hcn

=>AB=CD; AD=BC

=>AB=CD=4cm; CD=BC=3cm

AC=căn 3^2+4^2=5cm

2:

a: Xét tứ giác ABDC có

M là trung điểm chung của BC và AD

góc BAC=90 độ

=>ABDC là hình chữ nhật

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=BC/2

3:

ABCD là hcn

=>AD=CB và AD//CB

mà AE=AD
nên AE=CB

Xét tứ giác AEBC có

AE//BC

AE=BC

=>AEBC là hình bình hành

=>AC//BE

13 tháng 8 2023

không có đại hả?

không có hình à:v?

NV
10 tháng 3 2023

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)

\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

22 tháng 3

Đặt \(a = \frac{1}{x} ; b = \frac{1}{y} ; c = \frac{1}{z} \Rightarrow x y z = 1\) và \(x ; y ; z > 0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P = \frac{1}{\frac{1}{x^{3}} \left(\right. \frac{1}{y} + \frac{1}{z} \left.\right)} + \frac{1}{\frac{1}{y^{3}} \left(\right. \frac{1}{z} + \frac{1}{x} \left.\right)} + \frac{1}{\frac{1}{z^{3}} \left(\right. \frac{1}{x} + \frac{1}{y} \left.\right)}\)

\(= \frac{x^{3} y z}{y + z} + \frac{y^{3} z x}{z + x} + \frac{z^{3} x y}{x + y} = \frac{x^{2}}{y + z} + \frac{y^{2}}{z + x} + \frac{z^{2}}{x + y}\)

\(P \geq \frac{\left(\left(\right. x + y + z \left.\right)\right)^{2}}{y + z + z + x + x + y} = \frac{x + y + z}{2} \geq \frac{3 \sqrt[3]{x y z}}{2} = \frac{3}{2}\)

\(P_{m i n} = \frac{3}{2}\) khi \(x = y = z = 1\) hay \(a = b = c = 1\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)

\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)

\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)

\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

a: Xét tứ giác AEDF có \(\hat{AED}=\hat{AFD}=\hat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: AEDF là hình chữ nhật

=>DF//AE và DF=AE

DF//AE

=>GF//AE
Ta có DF=AE

DF=FG

Do đó: GF=AE

Xét tứ giác AEFG có

AE//FG

AE=FG

Do đó: AEFG là hình bình hành

c: AEDF là hình chữ nhật

=>AD cắt EF tại trung điểm của mỗi đường

mà H là trung điểm của AD

nên H là trung điểm của FE

AEDF là hình chữ nhật

=>AD=FE
\(HA=HD=\frac{AD}{2};HF=HE=\frac{EF}{2}\)

nên \(HA=HD=HF=HE=\frac{EF}{2}=\frac{AD}{2}\)

HI=HF

\(HF=HA\)

\(HA=\frac{AD}{2}\)

Do đó: \(IH=\frac{AD}{2}\)

Xét ΔIAD có

IH là đường trung tuyến

\(IH=\frac{AD}{2}\)

Do đó: ΔIAD vuông tại I

=>IA⊥ID

Bài 1:

a: \(\left(2a-b\right)\left(4a^2+2ab+b^2\right)\)

\(=8a^3+4a^2b+2ab^2-4a^2b-2ab^2-b^3\)

\(=8a^3-b^3\)

b: \(\left(3a+b\right)\left(9a^2-3ab+b^2\right)\)

\(=27a^3-9a^2b+3ab^2+9a^2b-3ab^2+b^3\)

\(=27a^3+b^3\)

c: \(\left(3a+2b\right)\left(3a-2b\right)-9a^2\)

\(=\left(3a\right)^2-\left(2b\right)^2-9a^2\)

\(=9a^2-4b^2-9a^2=-4b^2\)

d: \(\left(2x-3y\right)^2=\left(2x\right)^2-2\cdot2x\cdot3y+\left(3y\right)^2\)

\(=4x^2-12xy+9y^2\)

e: \(\left(3x-2y\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=27x^3-54x^2y+36xy^2-8y^3\)

Bài 2:

a: \(\left(3x-5\right)\left(-5x+7\right)-\left(5x+2\right)\left(-3x+2\right)=4\)

=>\(-15x^2+21x+25x-35-\left(-15x^2+10x-6x+4\right)=4\)

=>\(-15x^2+46x-35+15x^2-4x-4=4\)

=>42x-39=4

=>42x=43

=>\(x=\frac{43}{42}\)

b: \(6x^2-\left(2x+5\right)\left(3x-2\right)=7\)

=>\(6x^2-6x^2+4x-15x+10=7\)

=>-11x=7-10=-3

=>\(x=\frac{3}{11}\)

Bài 7:

a: Xét tứ giác AECF có

D là trung điểm chung của AC và EF

=>AECF là hình bình hành

=>AE//CF và AE=CF

Ta có: AE//CF

=>CF//BE

ta có: AE=CF

AE=BE

Do đó: CF=BE

Xét tứ giác BEFC có

BE//FC

BE=FC

Do đó: BEFC là hình bình hành

b: BEFC là hình bình hành

=>EF//BC

=>DK//BC

Xét tứ giác BDKC có

BD//KC

BC//DK

Do đó: BDKC là hình bình hành

Bài 9:

a: Ta có: BH⊥AC

CF⊥CA

Do đó: BH//CF

Ta có: CH⊥AB

BF⊥BA

Do đó: CH//BF

Xét tứ giác BHCF có

BH//CF

BF//CH

Do đó: BHCF là hình bình hành

b: Xét tứ giác ABFC có \(\hat{ABF}+\hat{ACF}+\hat{BAC}+\hat{BFC}=360^0\)

=>\(\hat{BAC}+\hat{BFC}=360^0-90^0-90^0=180^0\)

13 tháng 8

quá nhiều bài, gửi thì gửi 1-2 bài thôi


QT
Quoc Tran Anh Le
Giáo viên
30 tháng 8

21 giờ trước (10:46)

Mình nghĩ nên trình bày ra theo cách trình bày truyền thống ở trên lớp chứ sử dụng chatGPT thực tế ai cũng có thể làm điều đó.

13 tháng 8

chữ xấu quá mình không đọc được

sao chữ nó như con zun nó đag bò ấy nhỉ

S
13 tháng 8

a. áp dụnng định lý pythagore vào △ ABC vuông tại A ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(\operatorname{cm}\right)\)

b. diện tích △ ABC là:

\(\frac{6\cdot8}{2}=24\left(\operatorname{cm}^2\right)\)

c. ta có: \(BC\cdot AH=AB\cdot AC\)

\(\Rightarrow AH=\frac{AB\cdot AC}{BC}=\frac{6\cdot8}{10}=4,8\left(\operatorname{cm}\right)\)

áp dụng định lý pythagore vào △ ABH vuông tại H ta được:

\(HB=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6\left(\operatorname{cm}\right)\)

áp dụng định lý pythagore vào △ AHC vuông tại H ta được:

\(HC=\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=6,4\left(\operatorname{cm}\right)\)

d. vì M là trung điểm của cạnh BC

⇒ MB = MC = BC : 2 = 10 : 2 = 5 (cm)

ta có: BH + HM = BM

⇒ HM = BM - BH = 5 - 3,6 = 1,4 (cm)

áp dụng định lý pythagore vào △ AHM vuông tại H ta có:

\(AM=\sqrt{AH^2+HM^2}=\sqrt{4,8^2+1,4^2}=5\left(\operatorname{cm}\right)\)

S
13 tháng 8