Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để\(\frac{2x-1}{3+x}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}2x-1< 0\\3+x>0\end{cases}}\\\hept{\begin{cases}2x-1>0\\3+x< 0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x< \frac{1}{2}\\x>-3\end{cases}\left(ktm\right)}\\\hept{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}\left(tm\right)}\end{cases}}\)
Vậy -3<x<1/2
\(=3^4.\left(3^3\right)^4+3^2.\left(3^4\right)^3=3^{16}+3^2.\left(3^4\right)^3=\left(3^4\right)^4+3^2.\left(3^4\right)^3\)
\(3^4\) có tận cùng là 1 \(\Rightarrow\left(3^4\right)^4\) có tận cùng là 1
\(3^4\)có tận cùng là 1 \(\Rightarrow\left(3^4\right)^3\) có tận cùng là 1 \(\Rightarrow3^2.\left(3^4\right)^3\) có tận cùng là 9
=> Biểu thức có tận cùng là 0