K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,bằng -114

b,bằng 626

c,bằng -10

d, bằng -124

10 tháng 11 2021
Mình mới học lớp 2
10 tháng 11 2021

a]-102                                   b]423+136

                                               = 559

4 tháng 10 2021

A  HÂY B

4 tháng 10 2021

A

11 tháng 3 2015

Cái này mình làm không chắc chắn đâu nha !

10^n lúc nào chia 9 cũng dư 1(100 : 9 dư 1; 1000 chia 9 dư 1.....)

18 chia hết cho 9 => 18n chia hết cho 9

Vậy A= 10^n+18n-1 chia hết cho 9

                             Mà số chia hết cho 9 là chia hết cho 81 nên A chia hết cho 81

 

11 tháng 2 2016

chúng minh A là số chính phương mà chia hết cho 9 ý

31 tháng 3 2022

x . x = -4 x ( -9 )

x^2 = 36

x = 6

Vậy x = 6

31 tháng 3 2022

\(=>x^2=-4.\left(-9\right)\)

\(x^2=36\)

\(=>\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)

Ta có: 333444=111444.3444 
444333=111333.4333
Tách: 3444=(34)111=81111<=>4333=(43)111=64111
Mà: 111444>111333(1)
81111>64111 hay: (34)111>(43)111(2)
Từ (1) và (2) ta có:333444>444333

1 tháng 4 2016

ta co333^444= [111x3]^111x4

444^333=[111x4]^111x3

va ta co111^4x81>111^3x64=>333^444>444^333

5 tháng 4 2019

UCLN (3n+5:n+2)=1 thì hai số trên nguyên tố cùng nhau rùi .không rút gon được nữa => tối giản 

5 tháng 4 2019

Gọi d là UCLN ( 3n+5;n+2)

Ta có:\(\hept{\begin{cases}3n+5⋮d\\n+2⋮d\end{cases}}\)

\(n+2⋮d\Rightarrow3\left(n+2\right)\)

                     hay \(3n+6⋮d\)

   ta xét hiệu: \(3n+6-\left(3n+5\right)⋮d\)

                   \(\Rightarrow1⋮d\)

Vậy P là phân số tối giản với mọi n là STN khi UCLN (3n+5;n+2)=1

Chúc bạn hk tốt!!!

5 tháng 5 2018

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(............\)

\(\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow\)\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Rightarrow\)\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\)\(A< 1+1-\frac{1}{50}< 1+1\)

\(\Rightarrow\)\(A< 2\)

Vậy \(A< 2\)

Chúc bạn học tốt ~ 

5 tháng 5 2018

CM A < 2

=> CM \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1\)

Ta thấy: \(\frac{1}{2^2}=\frac{1}{4}< \frac{1}{2}=\frac{1}{1.2}\)

             \(\frac{1}{3^2}=\frac{1}{9}< \frac{1}{6}=\frac{1}{2.3}\)

Và cứ thế,....

             \(\frac{1}{50^2}=\frac{1}{2500}< \frac{1}{2450}=\frac{1}{49.50}\)

=>  \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

                                                                     \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

=>  \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1\)

=> \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1+\frac{1}{1^2}=1+1=2\)

=>ĐPCM