\(a^2+b^2-ab-a-b=0\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Bai nay a,b co nguyen ko ban , neu ko thi pt nay se co vo so nghiem (mik nghi the)

14 tháng 2 2020

a,b là số thực nha

6 tháng 8 2019

\(a,\) Thay a=1 ; b=-2 vào bt:

  \(\Rightarrow4x^2+2-2=0\)

      \(\Rightarrow4x^2=0\)

\(\Rightarrow x=0\)

a, thay a=1 b=-2 ta có phương trình 

\(4x^2-2\left(1+\left(-2\right)\right)x+1\left(-2\right)=0\)

\(4x^2+2x-2=0\)

\(2x^2+x-1=0\)

\(2x^2+2x-x-1=0\)

\(2x\left(x+1\right)-\left(x+1\right)=0\)

\(\left(x+1\right)\left(2x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)

6 tháng 8 2015

\(\sqrt{x^2-10x+25}=7-2x=>\sqrt{\left(x-5\right)^2}=7-2x=>!x-5!=7-2x\)

\(x-5=7-2x\left(x>=5\right)=>3x=7+5=>x=4\)

\(5-x=7-2x\left(x<5\right)=>2x-x=7-5=>x=2\)

30 tháng 5 2017
  1. \(\Leftrightarrow x^2-\sqrt{100}=0\Leftrightarrow x^2=10\Leftrightarrow x=\orbr{\begin{cases}x=\sqrt{10}\\x=-\sqrt{10}\end{cases}}\)
  2. \(\Leftrightarrow\sqrt{5^2\left(2x+1\right)^2}=10\Leftrightarrow5|2x+1|=10\Leftrightarrow|2x+1|=2\) vây
    1. nếu \(x\ge\frac{-1}{2}\) \(\Leftrightarrow2x+1=2\Leftrightarrow x=\frac{1}{2}\left(tm\right)\)
    2. nếu\(x< \frac{-1}{2}\Leftrightarrow2x+1=-2\Leftrightarrow x=\frac{-3}{2}\left(tm\right)\)kết luận nghiệm

2,từ a2+ab+b2 có tận cùng bằng 0

=>(a-b)(a2+ab+b2) có tận cùng =0

=>a3-b3 có tận cùng =0

=>a;b có cùng chữ số tận cùng 

=>a2;b2;ab có cùng chữ số tận cùng

gọi chữ số tận cùng của các số đó là a

=>a2+ab+b2 có tận cùng=tận cùng của a+a+a=3a=0

=>a=0

=>a;b chia hết cho 10

đặt a=10m;b=10n

=>a2+ab+b2=100m2+100mn+100n2=100(m2+mn+n2) có 2 chữ số tận cùng là 00

11 tháng 7 2017

bài gpt bình lên đi nghiệm ko xấu 3/2+căn 17/2

13 tháng 9 2019

ĐK: \(x\ge-7\)

PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)

\(\Leftrightarrow x=9\) 

P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((

7 tháng 11 2018

a) ĐK: x>=2

pt <=>\(\sqrt{x+3}+\sqrt{x-2}=5\) (bình phương 2 vế không âm)

<=>\(x+3+x-2+2\sqrt{\left(x+3\right)\left(x-2\right)}=25\) (chuyển vế rút gọn)

<=>\(\sqrt{\left(x+3\right)\left(x-2\right)}=12-x\) 

<=>\(\hept{\begin{cases}12-x\ge0\\x^2+x-6=144-24x+x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\le12\\25x=150\end{cases}}}\Leftrightarrow x=6\)( thỏa mãn điều kiện )

b)( Phương trình đối xứng loại 2, lấy hiệu hai phuowmh trình của hệ)

=> \(x^2-y^2=x-y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x+y-1=0\end{cases}}\)

Với x-y=0 <=> x=ythế vào một trong hai phương trình được một phương trình bậc 2. em tự giải tiếp nhé!

Với x+y-1=0 <=> x=1-y   thế vào  và làm như trên.

14 tháng 12 2018

Em hiểu câu a rồi nhưng câu b em không hiểu lắm cho dù đã học đối xứng loại 2